IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v74y2022i3d10.1007_s10463-021-00804-4.html
   My bibliography  Save this article

Semiparametric inference on general functionals of two semicontinuous populations

Author

Listed:
  • Meng Yuan

    (University of Waterloo)

  • Chunlin Wang

    (Xiamen University)

  • Boxi Lin

    (University of Toronto)

  • Pengfei Li

    (University of Waterloo)

Abstract

In this paper, we propose new semiparametric procedures for inference on linear functionals in the context of two semicontinuous populations. The distribution of each semicontinuous population is characterized by a mixture of a discrete point mass at zero and a continuous skewed positive component. To utilize the information from both populations, we model the positive components of the two mixture distributions via a semiparametric density ratio model. Under this model setup, we construct the maximum empirical likelihood estimators of the linear functionals. The asymptotic normality of the proposed estimators is established and is used to construct confidence regions and perform hypothesis tests for these functionals. We show that the proposed estimators are more efficient than the fully nonparametric ones. Simulation studies demonstrate the advantages of our method over existing methods. Two real-data examples are provided for illustration.

Suggested Citation

  • Meng Yuan & Chunlin Wang & Boxi Lin & Pengfei Li, 2022. "Semiparametric inference on general functionals of two semicontinuous populations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 451-472, June.
  • Handle: RePEc:spr:aistmt:v:74:y:2022:i:3:d:10.1007_s10463-021-00804-4
    DOI: 10.1007/s10463-021-00804-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-021-00804-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-021-00804-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Pauly & Edgar Brunner & Frank Konietschke, 2015. "Asymptotic permutation tests in general factorial designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 461-473, March.
    2. Jiang, Shan & Tu, Dongsheng, 2012. "Inference on the probability P(T1," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1069-1078.
    3. Zhou Xiao-Hua & Wanzhu Tu, 1999. "Comparison of Several Independent Population Means When Their Samples Contain Log-Normal and Possibly Zero Observations," Biometrics, The International Biometric Society, vol. 55(2), pages 645-651, June.
    4. Wang, Chunlin & Marriott, Paul & Li, Pengfei, 2017. "Testing homogeneity for multiple nonnegative distributions with excess zero observations," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 146-157.
    5. Zhou, Xiao-Hua & Tu, Wanzhu, 2000. "Interval estimation for the ratio in means of log-normally distributed medical costs with zero values," Computational Statistics & Data Analysis, Elsevier, vol. 35(2), pages 201-210, December.
    6. Wang, Chunlin & Marriott, Paul & Li, Pengfei, 2018. "Semiparametric inference on the means of multiple nonnegative distributions with excess zero observations," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 182-197.
    7. Jean-Marie Dufour & Emmanuel Flachaire & Lynda Khalaf, 2019. "Permutation Tests for Comparing Inequality Measures," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 457-470, July.
    8. Huapeng Li & Yang Liu & Yukun Liu & Riquan Zhang, 2018. "Comparison of empirical likelihood and its dual likelihood under density ratio model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(3), pages 581-597, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chunlin & Marriott, Paul & Li, Pengfei, 2018. "Semiparametric inference on the means of multiple nonnegative distributions with excess zero observations," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 182-197.
    2. Wang, Chunlin & Marriott, Paul & Li, Pengfei, 2017. "Testing homogeneity for multiple nonnegative distributions with excess zero observations," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 146-157.
    3. Smaga, Łukasz, 2015. "Wald-type statistics using {2}-inverses for hypothesis testing in general factorial designs," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 215-220.
    4. Dickhaus, Thorsten & Sirotko-Sibirskaya, Natalia, 2019. "Simultaneous statistical inference in dynamic factor models: Chi-square approximation and model-based bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 30-46.
    5. Marinho Bertanha & Eunyi Chung, 2023. "Permutation Tests at Nonparametric Rates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2833-2846, October.
    6. Taylor Sandra & Pollard Katherine, 2009. "Hypothesis Tests for Point-Mass Mixture Data with Application to `Omics Data with Many Zero Values," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-45, February.
    7. Purevdorj Tuvaandorj, 2021. "Robust Permutation Tests in Linear Instrumental Variables Regression," Papers 2111.13774, arXiv.org, revised Jul 2024.
    8. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    9. Frank Cowell & Emmanuel Flachaire, 2021. "Inequality Measurement: Methods and Data," Post-Print hal-03589066, HAL.
    10. H. V. Kulkarni & S. M. Patil, 2021. "Uniformly implementable small sample integrated likelihood ratio test for one-way and two-way ANOVA under heteroscedasticity and normality," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 273-305, June.
    11. Friedrich, Sarah & Brunner, Edgar & Pauly, Markus, 2017. "Permuting longitudinal data in spite of the dependencies," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 255-265.
    12. Stefano Bonnini & Getnet Melak Assegie & Kamila Trzcinska, 2024. "Review about the Permutation Approach in Hypothesis Testing," Mathematics, MDPI, vol. 12(17), pages 1-29, August.
    13. Chung, EunYi & Romano, Joseph P., 2016. "Multivariate and multiple permutation tests," Journal of Econometrics, Elsevier, vol. 193(1), pages 76-91.
    14. Bernhardt Paul W., 2018. "Maximum Likelihood Estimation in a Semicontinuous Survival Model with Covariates Subject to Detection Limits," The International Journal of Biostatistics, De Gruyter, vol. 14(2), pages 1-16, November.
    15. Yang, Yan & Simpson, Douglas, 2010. "Unified computational methods for regression analysis of zero-inflated and bound-inflated data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1525-1534, June.
    16. Dennis Dobler & Markus Pauly, 2018. "Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 639-658, September.
    17. Yufan Wang & Xingzhong Xu, 2023. "Homogeneity Test for Multiple Semicontinuous Data with the Density Ratio Model," Mathematics, MDPI, vol. 11(17), pages 1-28, September.
    18. Weizhong Tian & Yaoting Yang & Tingting Tong, 2022. "Confidence Intervals Based on the Difference of Medians for Independent Log-Normal Distributions," Mathematics, MDPI, vol. 10(16), pages 1-14, August.
    19. Andrew Briggs & Richard Nixon & Simon Dixon & Simon Thompson, 2005. "Parametric modelling of cost data: some simulation evidence," Health Economics, John Wiley & Sons, Ltd., vol. 14(4), pages 421-428, April.
    20. Jean-Marie Dufour & Emmanuel Flachaire & Lynda Khalaf & Abdallah Zalghout, 2020. "Identification-Robust Inequality Analysis," Cahiers de recherche 03-2020, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:74:y:2022:i:3:d:10.1007_s10463-021-00804-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.