IDEAS home Printed from https://ideas.repec.org/p/ame/wpaper/1307.html
   My bibliography  Save this paper

Identification and inference in moments based analysis of linear dynamic panel data models

Author

Listed:
  • Maurice J.G. Bun
  • Frank Kleibergen

Abstract

We show that Dif(ference), see Arellano and Bond (1991), Lev(el), see Arellano and Bover (1995) and Blundell and Bond (1998), or the N(on-)L(inear) moment conditions of Ahn and Schmidt (1995) do not identify the parameters of a first-order autoregressive panel data model when the autoregressive parameter is equal to one. Combinations of the Dif and Lev, resulting in Sys(tem), moment conditions and the Dif and NL, resulting in A(hn-)S(chmidt), moment conditions identify the parameters when there are four or more time periods. The behaviour of one step and two step GMM estimators, however, remains non-standard. We therefore use size correct GMM statistics, like, the GMM-AR, GMM-LM or KLM statistic, to conduct inference. We compare their worst case large sample distributions with the power envelope to determine the optimal statistic. The power envelope involves a quartic root convergence rate which further indicates the non-standard identification issues. The worst case large sample distribution of the KLM statistic coincides with the power envelope whilst the one of the GMM-LM statistic only does so when there are four time periods. It shows that the KLM statistic is efficient both when the autoregressive parameter is one or less than one. The power envelopes for the AS and Sys moment conditons are identical so assuming mean stationarity does not help for identification.

Suggested Citation

  • Maurice J.G. Bun & Frank Kleibergen, 2013. "Identification and inference in moments based analysis of linear dynamic panel data models," UvA-Econometrics Working Papers 13-07, Universiteit van Amsterdam, Dept. of Econometrics.
  • Handle: RePEc:ame:wpaper:1307
    as

    Download full text from publisher

    File URL: http://ase.uva.nl/binaries/content/assets/subsites/amsterdam-school-of-economics/research/uva-econometrics/dp-2013/1307.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen Bond & Frank Windmeijer, 2005. "Reliable Inference For Gmm Estimators? Finite Sample Properties Of Alternative Test Procedures In Linear Panel Data Models," Econometric Reviews, Taylor & Francis Journals, vol. 24(1), pages 1-37.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    4. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    5. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    6. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    7. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    8. Stephen Bond & Céline Nauges & Frank Windmeijer, 2005. "Unit roots: identification and testing in micro panels," CeMMAP working papers CWP07/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    10. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    11. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    12. Kruiniger, Hugo, 2009. "Gmm Estimation And Inference In Dynamic Panel Data Models With Persistent Data," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1348-1391, October.
    13. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
    14. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    15. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Chudik & M. Hashem Pesaran, 2017. "A Bias-Corrected Method of Moments Approach to Estimation of Dynamic Short-T Panels," CESifo Working Paper Series 6688, CESifo.
    2. Mehmet Caner & Xu Han & Yoonseok Lee, 2018. "Adaptive Elastic Net GMM Estimation With Many Invalid Moment Conditions: Simultaneous Model and Moment Selection," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 24-46, January.
    3. Piccoli, Luca & Tiezzi, Silvia, 2021. "Rational addiction and time-consistency: An empirical test," Journal of Health Economics, Elsevier, vol. 80(C).
    4. Tue Gørgens & Chirok Han & Sen Xue, 2019. "Moment Restrictions and Identification in Linear Dynamic Panel Data Models," Annals of Economics and Statistics, GENES, issue 134, pages 149-176.
    5. Alexander Chudik & M. Hashem Pesaran, 2017. "An Augmented Anderson-Hsiao Estimator for Dynamic Short-T Panels," Globalization Institute Working Papers 327, Federal Reserve Bank of Dallas, revised 27 Mar 2021.
    6. Tue Gorgens & Chirok Han & Sen Xue, 2016. "Asymptotic distributions of the quadratic GMM estimator in linear dynamic panel data models," ANU Working Papers in Economics and Econometrics 2016-635, Australian National University, College of Business and Economics, School of Economics.
    7. Owen Davis & Siavash Radpour, 2021. "Dissecting the Pandemic Retirement Surge," SCEPA publication series. 2021-05, Schwartz Center for Economic Policy Analysis (SCEPA), The New School.
    8. Pua, Andrew Adrian Yu & Fritsch, Markus & Schnurbus, Joachim, 2019. "Large sample properties of an IV estimator based on the Ahn and Schmidt moment conditions," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-37-19, University of Passau, Faculty of Business and Economics.
    9. Pua, Andrew Adrian Yu & Fritsch, Markus & Schnurbus, Joachim, 2019. "Practical aspects of using quadratic moment conditions in linear dynamic panel data models," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-38-19, University of Passau, Faculty of Business and Economics.
    10. Sentana, Enrique, 2024. "Finite underidentification," Journal of Econometrics, Elsevier, vol. 240(1).
    11. Feridoon Koohi-Kamali & Amit Roy, 2021. "Environmental Shocks and Child Labor: A Panel Data Ethiopia & India," SCEPA working paper series. 2021-05, Schwartz Center for Economic Policy Analysis (SCEPA), The New School.
    12. Fritsch, Markus, 2019. "On GMM estimation of linear dynamic panel data models," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-36-19, University of Passau, Faculty of Business and Economics.
    13. Fritsch, Markus & Pua, Andrew Adrian Yu & Schnurbus, Joachim, 2019. "Pdynmc - An R-package for estimating linear dynamic panel data models based on linear and nonlinear moment conditions," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-39-19, University of Passau, Faculty of Business and Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bun, Maurice J.G. & Kleibergen, Frank, 2022. "Identification Robust Inference For Moments-Based Analysis Of Linear Dynamic Panel Data Models," Econometric Theory, Cambridge University Press, vol. 38(4), pages 689-751, August.
    2. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    3. Maurice J. G. Bun & Frank Windmeijer, 2010. "The weak instrument problem of the system GMM estimator in dynamic panel data models," Econometrics Journal, Royal Economic Society, vol. 13(1), pages 95-126, February.
    4. Dovonon, Prosper & Hall, Alastair R. & Kleibergen, Frank, 2020. "Inference in second-order identified models," Journal of Econometrics, Elsevier, vol. 218(2), pages 346-372.
    5. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.
    6. Jean-Thomas Bernard & Ba Chu & Lynda Khalaf & Marcel Voia, 2019. "Non-Standard Confidence Sets for Ratios and Tipping Points with Applications to Dynamic Panel Data," Annals of Economics and Statistics, GENES, issue 134, pages 79-108.
    7. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    8. Kruiniger, Hugo, 2009. "Gmm Estimation And Inference In Dynamic Panel Data Models With Persistent Data," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1348-1391, October.
    9. Kazuhiko Hayakawa & M. Hashem Pesaran, 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models," Working Paper series 38_12, Rimini Centre for Economic Analysis.
    10. Kruiniger, Hugo, 2013. "Quasi ML estimation of the panel AR(1) model with arbitrary initial conditions," Journal of Econometrics, Elsevier, vol. 173(2), pages 175-188.
    11. Thorsten Beck, 2009. "The Econometrics of Finance and Growth," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 25, pages 1180-1209, Palgrave Macmillan.
    12. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    13. Hayakawa, K. & Pesaran, M.H., 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Models," Cambridge Working Papers in Economics 1224, Faculty of Economics, University of Cambridge.
    14. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Mukhopadhyay, Jhuma & Chakraborty, Indrani, 2017. "Foreign institutional investment, business groups and firm performance: Evidence from India," Research in International Business and Finance, Elsevier, vol. 39(PA), pages 454-465.
    16. de Moraes, Claudio Oliveira & Cruz, Guilherme, 2023. "What do we know about the relationship between banks and income inequality? Empirical evidence for emerging and low-income countries," Journal of Economics and Business, Elsevier, vol. 123(C).
    17. Deodat E. Adenutsi & Meshach J. Aziakpono & Matthew K. Ocran, 2011. "The Changing Impact Of Macroeconomic Environment On Remittance Inflows In Sub-Saharan Africa," Journal of Academic Research in Economics, Spiru Haret University, Faculty of Accounting and Financial Management Constanta, vol. 3(2 (July)), pages 136-167.
    18. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    19. Erik Biørn, 2002. "Handling the measurement error problem by means of panel data: Moment methods applied on firm data," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 B6-1, International Conferences on Panel Data.
    20. Donald W. K. Andrews & Patrik Guggenberger, 2015. "Identification- and Singularity-Robust Inference for Moment Condition," Cowles Foundation Discussion Papers 1978R2, Cowles Foundation for Research in Economics, Yale University, revised Jan 2019.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ame:wpaper:1307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Noud P.A. van Giersbergen (email available below). General contact details of provider: https://edirc.repec.org/data/feuvanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.