IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v82y2002i1p166-188.html
   My bibliography  Save this article

Local Polynomial Fitting in Semivarying Coefficient Model

Author

Listed:
  • Zhang, Wenyang
  • Lee, Sik-Yum
  • Song, Xinyuan

Abstract

Varying coefficient models are useful extensions of the classical linear models. Under the condition that the coefficient functions possess about the same degrees of smoothness, the model can easily be estimated via simple local regression. This leads to the one-step estimation procedure. In this paper, we consider a semivarying coefficient model which is an extension of the varying coefficient model, which is called the semivarying-coefficient model. Procedures for estimation of the linear part and the nonparametric part are developed and their associated statistical properties are studied. The proposed methods are illustrated by some simulation studies and a real example.

Suggested Citation

  • Zhang, Wenyang & Lee, Sik-Yum & Song, Xinyuan, 2002. "Local Polynomial Fitting in Semivarying Coefficient Model," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 166-188, July.
  • Handle: RePEc:eee:jmvana:v:82:y:2002:i:1:p:166-188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(01)92012-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Wenyang & Lee, Sik-Yum, 2000. "Variable Bandwidth Selection in Varying-Coefficient Models," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 116-134, July.
    2. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    3. Jianqing Fan & Wenyang Zhang, 2000. "Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 715-731, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, XiaoLi & You, JinHong, 2012. "Error covariance matrix correction based approach to functional coefficient regression models with generated covariates," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 263-281.
    2. Byeong U. Park & Enno Mammen & Young K. Lee & Eun Ryung Lee, 2015. "Varying Coefficient Regression Models: A Review and New Developments," International Statistical Review, International Statistical Institute, vol. 83(1), pages 36-64, April.
    3. Jing Sun & Lu Lin, 2014. "Local rank estimation and related test for varying-coefficient partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 187-206, March.
    4. Liang, Zhongwen & Li, Qi, 2012. "Functional coefficient regression models with time trend," Journal of Econometrics, Elsevier, vol. 170(1), pages 15-31.
    5. Wang-Li Xu & Li-Xing Zhu, 2008. "Goodness-of-fit testing for varying-coefficient models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(2), pages 129-146, September.
    6. Jun Jin & Tiefeng Ma & Jiajia Dai, 2021. "New efficient spline estimation for varying-coefficient models with two-step knot number selection," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 693-712, July.
    7. Delgado, Miguel A. & Arteaga-Molina, Luis A., 2021. "Testing constancy in varying coefficient models," Journal of Econometrics, Elsevier, vol. 222(1), pages 625-644.
    8. Jialiang Li & Wenyang Zhang & Zhengxiao Wu, 2011. "Optimal zone for bandwidth selection in semiparametric models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 701-717.
    9. Jianqing Fan & Qiwei Yao & Zongwu Cai, 2003. "Adaptive varying‐coefficient linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 57-80, February.
    10. Wang, Qihua & Xue, Liugen, 2011. "Statistical inference in partially-varying-coefficient single-index model," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 1-19, January.
    11. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    12. Alan T. K. Wan & Shangyu Xie & Yong Zhou, 2017. "A varying coefficient approach to estimating hedonic housing price functions and their quantiles," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 1979-1999, August.
    13. Yan Sun & Jialiang Li & Wenyang Zhang, 2012. "Estimation and model selection in a class of semiparametric models for cluster data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 835-856, August.
    14. Peng, Heng & Xie, Chuanlong & Zhao, Jingxin, 2021. "Fast inference for semi-varying coefficient models via local averaging," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    15. Sayar Karmakar & Arkaprava Roy, 2020. "Bayesian modelling of time-varying conditional heteroscedasticity," Papers 2009.06007, arXiv.org, revised Mar 2021.
    16. Ghosal, Rahul & Maity, Arnab, 2022. "A Score Based Test for Functional Linear Concurrent Regression," Econometrics and Statistics, Elsevier, vol. 21(C), pages 114-130.
    17. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    18. Hu, Lixia & Huang, Tao & You, Jinhong, 2019. "Two-step estimation of time-varying additive model for locally stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 94-110.
    19. Herwartz, H. & Xu, F., 2010. "A functional coefficient model view of the Feldstein-Horioka puzzle," Journal of International Money and Finance, Elsevier, vol. 29(1), pages 37-54, February.
    20. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:82:y:2002:i:1:p:166-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.