IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i10p1034-1042.html
   My bibliography  Save this article

A simple nonparametric test for diagnosing nonlinearity in Tobit median regression model

Author

Listed:
  • Wang, Lan

Abstract

In many applications, the response variable is observed only when it is above or below a given threshold otherwise the threshold itself is observed. Tobit median regression model is a useful semiparametric procedure for analyzing this type of censored data. We propose a simple nonparametric test for assessing the common linearity assumption in this model. Compared to those existing methods in the literature, the new test has the advantage of allowing the alternative to be any smooth function. In addition, it does not require any knowledge of the parametric distribution of the random error. The test is asymptotically normal under the null hypothesis of linearity. A small Monte Carlo study demonstrates its performance.

Suggested Citation

  • Wang, Lan, 2007. "A simple nonparametric test for diagnosing nonlinearity in Tobit median regression model," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 1034-1042, June.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:10:p:1034-1042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00044-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    2. Akritas M.G. & Papadatos N., 2004. "Heteroscedastic One-Way ANOVA and Lack-of-Fit Tests," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 368-382, January.
    3. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
    4. Horowitz, Joel L & Spokoiny, Vladimir G, 2001. "An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model against a Nonparametric Alternative," Econometrica, Econometric Society, vol. 69(3), pages 599-631, May.
    5. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    6. Portnoy S., 2003. "Censored Regression Quantiles," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1001-1012, January.
    7. Ait-Sahalia, Yacine & Bickel, Peter J. & Stoker, Thomas M., 2001. "Goodness-of-fit tests for kernel regression with an application to option implied volatilities," Journal of Econometrics, Elsevier, vol. 105(2), pages 363-412, December.
    8. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    9. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, September.
    10. He X. & Zhu L-X., 2003. "A Lack-of-Fit Test for Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1013-1022, January.
    11. Horowitz, Joel L & Neumann, George R, 1989. "Specification Testing in Censored Regression Models: Parametric and Semiparametric Methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(S), pages 61-86, Supplemen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weichi Wu & Zhou Zhou, 2017. "Nonparametric Inference for Time-Varying Coefficient Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 98-109, January.
    2. Song, Weixing & Yao, Weixin, 2011. "A lack-of-fit test in Tobit errors-in-variables regression models," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1792-1801.
    3. Song, Weixing & Zhang, Yi, 2012. "Empirical L2-distance lack-of-fit tests for Tobit regression models," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 380-396.
    4. Koul, Hira L. & Song, Weixing & Liu, Shan, 2014. "Model checking in Tobit regression via nonparametric smoothing," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 36-49.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    2. Koul, Hira L. & Song, Weixing & Liu, Shan, 2014. "Model checking in Tobit regression via nonparametric smoothing," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 36-49.
    3. Song, Weixing & Zhang, Yi, 2012. "Empirical L2-distance lack-of-fit tests for Tobit regression models," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 380-396.
    4. Song, Weixing & Yao, Weixin, 2011. "A lack-of-fit test in Tobit errors-in-variables regression models," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1792-1801.
    5. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Robust Estimation of Wage Dispersion with Censored Data: An Application to Occupational Earnings Risk and Risk Attitudes," De Economist, Springer, vol. 168(4), pages 519-540, December.
    6. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    7. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    8. Rama Lionel Ngenzebuke, 2016. "Female say on income and child outcomes: Evidence from Nigeria," WIDER Working Paper Series 134, World Institute for Development Economic Research (UNU-WIDER).
    9. Gao, Jiti & King, Maxwell, 2003. "Estimation and model specification testing in nonparametric and semiparametric econometric models," MPRA Paper 11989, University Library of Munich, Germany, revised Feb 2006.
    10. Kenneth Y. Chay & James L. Powell, 2001. "Semiparametric Censored Regression Models," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 29-42, Fall.
    11. Masamune Iwasawa, 2015. "A Joint Specification Test for Response Probabilities in Unordered Multinomial Choice Models," Econometrics, MDPI, vol. 3(3), pages 1-31, September.
    12. Aurora Galego & João Pereira, 2010. "Evidence On Gender Wage Discrimination In Portugal: Parametric And Semi‐Parametric Approaches," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 56(4), pages 651-666, December.
    13. Bertanha, Marinho & McCallum, Andrew H. & Seegert, Nathan, 2023. "Better bunching, nicer notching," Journal of Econometrics, Elsevier, vol. 237(2).
    14. Manuel Arellano & Stéphane Bonhomme, 2017. "Sample Selection in Quantile Regression: A Survey," Working Papers wp2018_1702, CEMFI.
    15. Roy, Abhik & Walters, Peter G. P. & Luk, Sherriff T. K., 2001. "Chinese puzzles and paradoxes: conducting business research in China," Journal of Business Research, Elsevier, vol. 52(2), pages 203-210, May.
    16. Blundell, Richard & Powell, James L., 2007. "Censored regression quantiles with endogenous regressors," Journal of Econometrics, Elsevier, vol. 141(1), pages 65-83, November.
    17. Manuel Arellano & Stéphane Bonhomme, 2017. "Sample Selection in Quantile Regression: A Survey," Working Papers wp2017_1702, CEMFI.
    18. Maria Karlsson & Thomas Laitila, 2014. "Finite mixture modeling of censored regression models," Statistical Papers, Springer, vol. 55(3), pages 627-642, August.
    19. Kohei Enami & John Mullahy, 2009. "Tobit at fifty: a brief history of Tobin's remarkable estimator, of related empirical methods, and of limited dependent variable econometrics in health economics," Health Economics, John Wiley & Sons, Ltd., vol. 18(6), pages 619-628, June.
    20. Aguirregabiria, Victor, 2009. "Some Notes on Sample Selection Models," MPRA Paper 15974, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:10:p:1034-1042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.