IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i519p904-908.html
   My bibliography  Save this article

Rejoinder: Statistical Significance and the Dichotomization of Evidence

Author

Listed:
  • Blakeley B. McShane
  • David Gal

Abstract

No abstract is available for this item.

Suggested Citation

  • Blakeley B. McShane & David Gal, 2017. "Rejoinder: Statistical Significance and the Dichotomization of Evidence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 904-908, July.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:904-908
    DOI: 10.1080/01621459.2017.1323642
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1323642
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1323642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William M. Briggs, 2017. "The Substitute for -Values," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 897-898, July.
    2. Eric B. Laber & Kerby Shedden, 2017. "Statistical Significance and the Dichotomization of Evidence: The Relevance of the ASA Statement on Statistical Significance and p-Values for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 902-904, July.
    3. Blakeley B. McShane & David Gal, 2016. "Blinding Us to the Obvious? The Effect of Statistical Training on the Evaluation of Evidence," Management Science, INFORMS, vol. 62(6), pages 1707-1718, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luigi Pace & Alessandra Salvan, 2020. "Likelihood, Replicability and Robbins' Confidence Sequences," International Statistical Review, International Statistical Institute, vol. 88(3), pages 599-615, December.
    2. Jeffrey A. Mills & Gary Cornwall & Beau A. Sauley & Jeffrey R. Strawn, 2018. "Improving the Analysis of Randomized Controlled Trials: a Posterior Simulation Approach," BEA Working Papers 0157, Bureau of Economic Analysis.
    3. Glenn Shafer, 2021. "Testing by betting: A strategy for statistical and scientific communication," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 407-431, April.
    4. David J. Hand, 2022. "Trustworthiness of statistical inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 329-347, January.
    5. Anderson, Brian S., 2022. "What executives get wrong about statistics: Moving from statistical significance to effect sizes and practical impact," Business Horizons, Elsevier, vol. 65(3), pages 379-388.
    6. Maximilian Maier & Tyler J. VanderWeele & Maya B. Mathur, 2022. "Using selection models to assess sensitivity to publication bias: A tutorial and call for more routine use," Campbell Systematic Reviews, John Wiley & Sons, vol. 18(3), September.
    7. Hirschauer Norbert & Grüner Sven & Mußhoff Oliver & Becker Claudia, 2019. "Twenty Steps Towards an Adequate Inferential Interpretation of p-Values in Econometrics," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(4), pages 703-721, August.
    8. Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).
    9. Maier, Maximilian & VanderWeele, Tyler & Mathur, Maya B, 2021. "Using Selection Models to Assess Sensitivity to Publication Bias: A Tutorial and Call for More Routine Use," MetaArXiv tp45u, Center for Open Science.
    10. Anderson, Brian S. & Wennberg, Karl & McMullen, Jeffery S., 2019. "Editorial: Enhancing quantitative theory-testing entrepreneurship research," Journal of Business Venturing, Elsevier, vol. 34(5), pages 1-1.
    11. Furukawa, Chishio, 2019. "Publication Bias under Aggregation Frictions: Theory, Evidence, and a New Correction Method," EconStor Preprints 194798, ZBW - Leibniz Information Centre for Economics.
    12. Sadri, Arash, 2022. "The Ultimate Cause of the “Reproducibility Crisis”: Reductionist Statistics," MetaArXiv yxba5, Center for Open Science.
    13. Strømland, Eirik, 2019. "Preregistration and reproducibility," Journal of Economic Psychology, Elsevier, vol. 75(PA).
    14. Han Wang & Sieglinde S Snapp & Monica Fisher & Frederi Viens, 2019. "A Bayesian analysis of longitudinal farm surveys in Central Malawi reveals yield determinants and site-specific management strategies," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-17, August.
    15. Wennberg, Karl & Anderson, Brian S. & McMullen, Jeffrey, 2019. "2 Editorial: Enhancing Quantitative Theory-Testing Entrepreneurship Research," Ratio Working Papers 323, The Ratio Institute.
    16. J. M. Bauer & L. A. Reisch, 2019. "Behavioural Insights and (Un)healthy Dietary Choices: a Review of Current Evidence," Journal of Consumer Policy, Springer, vol. 42(1), pages 3-45, March.
    17. Maya B. Mathur & Tyler J. VanderWeele, 2020. "Sensitivity analysis for publication bias in meta‐analyses," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1091-1119, November.
    18. Tom Engsted, 2024. "What Is the False Discovery Rate in Empirical Research?," Econ Journal Watch, Econ Journal Watch, vol. 21(1), pages 1-92–112, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eleni Verykouki & Christos T. Nakas, 2023. "Adaptations on the Use of p -Values for Statistical Inference: An Interpretation of Messages from Recent Public Discussions," Stats, MDPI, vol. 6(2), pages 1-13, April.
    2. Jesper W. Schneider, 2018. "Response to commentary on “Is NHST logically flawed”," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 2193-2194, September.
    3. Todd A. Hall & Sharique Hasan, 2022. "Organizational decision-making and the returns to experimentation," Journal of Organization Design, Springer;Organizational Design Community, vol. 11(4), pages 129-144, December.
    4. Roy Chen & Yan Chen & Yohanes E. Riyanto, 2021. "Best practices in replication: a case study of common information in coordination games," Experimental Economics, Springer;Economic Science Association, vol. 24(1), pages 2-30, March.
    5. Anderson, Brian S. & Wennberg, Karl & McMullen, Jeffery S., 2019. "Editorial: Enhancing quantitative theory-testing entrepreneurship research," Journal of Business Venturing, Elsevier, vol. 34(5), pages 1-1.
    6. J. M. Bauer & L. A. Reisch, 2019. "Behavioural Insights and (Un)healthy Dietary Choices: a Review of Current Evidence," Journal of Consumer Policy, Springer, vol. 42(1), pages 3-45, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:904-908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.