What executives get wrong about statistics: Moving from statistical significance to effect sizes and practical impact
Author
Abstract
Suggested Citation
DOI: 10.1016/j.bushor.2021.05.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Anja Lambrecht & Catherine Tucker, 2019. "Algorithmic Bias? An Empirical Study of Apparent Gender-Based Discrimination in the Display of STEM Career Ads," Management Science, INFORMS, vol. 65(7), pages 2966-2981, July.
- Blakeley B. McShane & David Gal, 2017. "Rejoinder: Statistical Significance and the Dichotomization of Evidence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 904-908, July.
- Lee, In & Shin, Yong Jae, 2020. "Machine learning for enterprises: Applications, algorithm selection, and challenges," Business Horizons, Elsevier, vol. 63(2), pages 157-170.
- Blakeley B. McShane & David Gal, 2017. "Statistical Significance and the Dichotomization of Evidence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 885-895, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gustavo da Silva Motta, 2022. "What Is a Technological Article?," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 26(sup2022), pages 220208-2202.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alina Köchling & Marius Claus Wehner, 2020. "Discriminated by an algorithm: a systematic review of discrimination and fairness by algorithmic decision-making in the context of HR recruitment and HR development," Business Research, Springer;German Academic Association for Business Research, vol. 13(3), pages 795-848, November.
- Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).
- Maier, Maximilian & VanderWeele, Tyler & Mathur, Maya B, 2021. "Using Selection Models to Assess Sensitivity to Publication Bias: A Tutorial and Call for More Routine Use," MetaArXiv tp45u, Center for Open Science.
- Anderson, Brian S. & Wennberg, Karl & McMullen, Jeffery S., 2019. "Editorial: Enhancing quantitative theory-testing entrepreneurship research," Journal of Business Venturing, Elsevier, vol. 34(5), pages 1-1.
- Wennberg, Karl & Anderson, Brian S. & McMullen, Jeffrey, 2019. "2 Editorial: Enhancing Quantitative Theory-Testing Entrepreneurship Research," Ratio Working Papers 323, The Ratio Institute.
- Maya B. Mathur & Tyler J. VanderWeele, 2020. "Sensitivity analysis for publication bias in meta‐analyses," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1091-1119, November.
- David J. Hand, 2022. "Trustworthiness of statistical inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 329-347, January.
- J. M. Bauer & L. A. Reisch, 2019. "Behavioural Insights and (Un)healthy Dietary Choices: a Review of Current Evidence," Journal of Consumer Policy, Springer, vol. 42(1), pages 3-45, March.
- Jeffrey A. Mills & Gary Cornwall & Beau A. Sauley & Jeffrey R. Strawn, 2018. "Improving the Analysis of Randomized Controlled Trials: a Posterior Simulation Approach," BEA Working Papers 0157, Bureau of Economic Analysis.
- Han Wang & Sieglinde S Snapp & Monica Fisher & Frederi Viens, 2019. "A Bayesian analysis of longitudinal farm surveys in Central Malawi reveals yield determinants and site-specific management strategies," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-17, August.
- Tom Engsted, 2024. "What Is the False Discovery Rate in Empirical Research?," Econ Journal Watch, Econ Journal Watch, vol. 21(1), pages 1-92–112, March.
- Luigi Pace & Alessandra Salvan, 2020. "Likelihood, Replicability and Robbins' Confidence Sequences," International Statistical Review, International Statistical Institute, vol. 88(3), pages 599-615, December.
- Glenn Shafer, 2021. "Testing by betting: A strategy for statistical and scientific communication," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 407-431, April.
- Maximilian Maier & Tyler J. VanderWeele & Maya B. Mathur, 2022. "Using selection models to assess sensitivity to publication bias: A tutorial and call for more routine use," Campbell Systematic Reviews, John Wiley & Sons, vol. 18(3), September.
- Hirschauer Norbert & Grüner Sven & Mußhoff Oliver & Becker Claudia, 2019. "Twenty Steps Towards an Adequate Inferential Interpretation of p-Values in Econometrics," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(4), pages 703-721, August.
- Sadri, Arash, 2022. "The Ultimate Cause of the “Reproducibility Crisis”: Reductionist Statistics," MetaArXiv yxba5, Center for Open Science.
- Strømland, Eirik, 2019. "Preregistration and reproducibility," Journal of Economic Psychology, Elsevier, vol. 75(PA).
- Furukawa, Chishio, 2019. "Publication Bias under Aggregation Frictions: Theory, Evidence, and a New Correction Method," EconStor Preprints 194798, ZBW - Leibniz Information Centre for Economics.
- Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
- Bavaresco, Rodrigo Simon & Nesi, Luan Carlos & Victória Barbosa, Jorge Luis & Antunes, Rodolfo Stoffel & da Rosa Righi, Rodrigo & da Costa, Cristiano André & Vanzin, Mariangela & Dornelles, Daniel & J, 2023. "Machine learning-based automation of accounting services: An exploratory case study," International Journal of Accounting Information Systems, Elsevier, vol. 49(C).
More about this item
Keywords
Statistical significance; Statistical correlation; Data analysis; Omitted variables; P value;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:bushor:v:65:y:2022:i:3:p:379-388. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/bushor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.