IDEAS home Printed from https://ideas.repec.org/p/bea/wpaper/0157.html
   My bibliography  Save this paper

Improving the Analysis of Randomized Controlled Trials: a Posterior Simulation Approach

Author

Listed:
  • Jeffrey A. Mills
  • Gary Cornwall
  • Beau A. Sauley
  • Jeffrey R. Strawn

    (Bureau of Economic Analysis)

Abstract

The randomized controlled trial (RCT) is the standard for establishing efficacy and tolerability of treatments. However, the statistical evaluation of treatment effects in RCTs has remained largely unchanged for several decades. A new approach to Bayesian hypothesis testing for RCTs that leverages posterior simulation methods is developed. This approach (1) employs Monte Carlo simulation to obtain exact posterior distributions with fewer restrictive assumptions than required by current standard methods, allowing for a relatively simple procedure for inference with analytically intractable models, and (2) utilizes a novel approach to Bayesian hypothesis testing.

Suggested Citation

  • Jeffrey A. Mills & Gary Cornwall & Beau A. Sauley & Jeffrey R. Strawn, 2018. "Improving the Analysis of Randomized Controlled Trials: a Posterior Simulation Approach," BEA Working Papers 0157, Bureau of Economic Analysis.
  • Handle: RePEc:bea:wpaper:0157
    as

    Download full text from publisher

    File URL: https://www.bea.gov/system/files/papers/WP2018-9.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blakeley B. McShane & David Gal, 2017. "Rejoinder: Statistical Significance and the Dichotomization of Evidence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 904-908, July.
    2. Andrew Gelman & John Carlin, 2017. "Some Natural Solutions to the -Value Communication Problem—and Why They Won’t Work," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 899-901, July.
    3. Williamson, S. Faye & Jacko, Peter & Villar, Sofía S. & Jaki, Thomas, 2017. "A Bayesian adaptive design for clinical trials in rare diseases," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 136-153.
    4. Blakeley B. McShane & David Gal, 2017. "Statistical Significance and the Dichotomization of Evidence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 885-895, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirschauer Norbert & Grüner Sven & Mußhoff Oliver & Becker Claudia, 2019. "Twenty Steps Towards an Adequate Inferential Interpretation of p-Values in Econometrics," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(4), pages 703-721, August.
    2. David J. Hand, 2022. "Trustworthiness of statistical inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 329-347, January.
    3. Luigi Pace & Alessandra Salvan, 2020. "Likelihood, Replicability and Robbins' Confidence Sequences," International Statistical Review, International Statistical Institute, vol. 88(3), pages 599-615, December.
    4. Glenn Shafer, 2021. "Testing by betting: A strategy for statistical and scientific communication," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 407-431, April.
    5. Maximilian Maier & Tyler J. VanderWeele & Maya B. Mathur, 2022. "Using selection models to assess sensitivity to publication bias: A tutorial and call for more routine use," Campbell Systematic Reviews, John Wiley & Sons, vol. 18(3), September.
    6. Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).
    7. Maier, Maximilian & VanderWeele, Tyler & Mathur, Maya B, 2021. "Using Selection Models to Assess Sensitivity to Publication Bias: A Tutorial and Call for More Routine Use," MetaArXiv tp45u, Center for Open Science.
    8. Anderson, Brian S. & Wennberg, Karl & McMullen, Jeffery S., 2019. "Editorial: Enhancing quantitative theory-testing entrepreneurship research," Journal of Business Venturing, Elsevier, vol. 34(5), pages 1-1.
    9. Sadri, Arash, 2022. "The Ultimate Cause of the “Reproducibility Crisis”: Reductionist Statistics," MetaArXiv yxba5, Center for Open Science.
    10. Strømland, Eirik, 2019. "Preregistration and reproducibility," Journal of Economic Psychology, Elsevier, vol. 75(PA).
    11. Wennberg, Karl & Anderson, Brian S. & McMullen, Jeffrey, 2019. "2 Editorial: Enhancing Quantitative Theory-Testing Entrepreneurship Research," Ratio Working Papers 323, The Ratio Institute.
    12. Maya B. Mathur & Tyler J. VanderWeele, 2020. "Sensitivity analysis for publication bias in meta‐analyses," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1091-1119, November.
    13. Anderson, Brian S., 2022. "What executives get wrong about statistics: Moving from statistical significance to effect sizes and practical impact," Business Horizons, Elsevier, vol. 65(3), pages 379-388.
    14. Furukawa, Chishio, 2019. "Publication Bias under Aggregation Frictions: Theory, Evidence, and a New Correction Method," EconStor Preprints 194798, ZBW - Leibniz Information Centre for Economics.
    15. J. M. Bauer & L. A. Reisch, 2019. "Behavioural Insights and (Un)healthy Dietary Choices: a Review of Current Evidence," Journal of Consumer Policy, Springer, vol. 42(1), pages 3-45, March.
    16. Han Wang & Sieglinde S Snapp & Monica Fisher & Frederi Viens, 2019. "A Bayesian analysis of longitudinal farm surveys in Central Malawi reveals yield determinants and site-specific management strategies," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-17, August.
    17. Tom Engsted, 2024. "What Is the False Discovery Rate in Empirical Research?," Econ Journal Watch, Econ Journal Watch, vol. 21(1), pages 1-92–112, March.
    18. Hirschauer, Norbert & Grüner, Sven & Mußhoff, Oliver & Becker, Claudia & Jantsch, Antje, 2020. "Can p-values be meaningfully interpreted without random sampling?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 14, pages 71-91.
    19. Sofía S. Villar & William F. Rosenberger, 2018. "Covariate†adjusted response†adaptive randomization for multi†arm clinical trials using a modified forward looking Gittins index rule," Biometrics, The International Biometric Society, vol. 74(1), pages 49-57, March.
    20. Helen Yvette Barnett & Sofía S. Villar & Helena Geys & Thomas Jaki, 2023. "A novel statistical test for treatment differences in clinical trials using a response‐adaptive forward‐looking Gittins Index Rule," Biometrics, The International Biometric Society, vol. 79(1), pages 86-97, March.

    More about this item

    JEL classification:

    • E60 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bea:wpaper:0157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Batch (email available below). General contact details of provider: https://edirc.repec.org/data/beagvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.