IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v111y2016i514p447-458.html
   My bibliography  Save this article

Discrete Optimization for Interpretable Study Populations and Randomization Inference in an Observational Study of Severe Sepsis Mortality

Author

Listed:
  • Colin B. Fogarty
  • Mark E. Mikkelsen
  • David F. Gaieski
  • Dylan S. Small

Abstract

Motivated by an observational study of the effect of hospital ward versus intensive care unit admission on severe sepsis mortality, we develop methods to address two common problems in observational studies: (1) when there is a lack of covariate overlap between the treated and control groups, how to define an interpretable study population wherein inference can be conducted without extrapolating with respect to important variables; and (2) how to use randomization inference to form confidence intervals for the average treatment effect with binary outcomes. Our solution to problem (1) incorporates existing suggestions in the literature while yielding a study population that is easily understood in terms of the covariates themselves, and can be solved using an efficient branch-and-bound algorithm. We address problem (2) by solving a linear integer program to use the worst-case variance of the average treatment effect among values for unobserved potential outcomes that are compatible with the null hypothesis. Our analysis finds no evidence for a difference between the 60-day mortality rates if all individuals were admitted to the ICU and if all patients were admitted to the hospital ward among less severely ill patients and among patients with cryptic septic shock. We implement our methodology in R, providing scripts in the supplementary material.

Suggested Citation

  • Colin B. Fogarty & Mark E. Mikkelsen & David F. Gaieski & Dylan S. Small, 2016. "Discrete Optimization for Interpretable Study Populations and Randomization Inference in an Observational Study of Severe Sepsis Mortality," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 447-458, April.
  • Handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:447-458
    DOI: 10.1080/01621459.2015.1112802
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2015.1112802
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2015.1112802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    2. Ben B. Hansen, 2004. "Full Matching in an Observational Study of Coaching for the SAT," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 609-618, January.
    3. King, Gary & Zeng, Langche, 2006. "The Dangers of Extreme Counterfactuals," Political Analysis, Cambridge University Press, vol. 14(2), pages 131-159, April.
    4. José R. Zubizarreta, 2012. "Using Mixed Integer Programming for Matching in an Observational Study of Kidney Failure After Surgery," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1360-1371, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruoqi Yu, 2021. "Evaluating and improving a matched comparison of antidepressants and bone density," Biometrics, The International Biometric Society, vol. 77(4), pages 1276-1288, December.
    2. Colin B. Fogarty & Pixu Shi & Mark E. Mikkelsen & Dylan S. Small, 2017. "Randomization Inference and Sensitivity Analysis for Composite Null Hypotheses With Binary Outcomes in Matched Observational Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 321-331, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mellace, Giovanni & Ventura, Marco, 2019. "Intended and unintended effects of public incentives for innovation. Quasi-experimental evidence from Italy," Discussion Papers on Economics 9/2019, University of Southern Denmark, Department of Economics.
    2. Benjamin Lu & Eli Ben-Michael & Avi Feller & Luke Miratrix, 2023. "Is It Who You Are or Where You Are? Accounting for Compositional Differences in Cross-Site Treatment Effect Variation," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 420-453, August.
    3. Matthew Blackwell & Stefano Iacus & Gary King & Giuseppe Porro, 2009. "cem: Coarsened exact matching in Stata," Stata Journal, StataCorp LP, vol. 9(4), pages 524-546, December.
    4. Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
    5. repec:jss:jstsof:25:i11 is not listed on IDEAS
    6. Jason J. Sauppe & Sheldon H. Jacobson, 2017. "The role of covariate balance in observational studies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 323-344, June.
    7. Siyu Heng & Hyunseung Kang & Dylan S. Small & Colin B. Fogarty, 2021. "Increasing power for observational studies of aberrant response: An adaptive approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 482-504, July.
    8. José R. Zubizarreta, 2015. "Stable Weights that Balance Covariates for Estimation With Incomplete Outcome Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 910-922, September.
    9. Md Saiful Islam & Md Sarowar Morshed & Gary J Young & Md Noor-E-Alam, 2019. "Robust policy evaluation from large-scale observational studies," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-19, October.
    10. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    11. Glazer Amanda K. & Pimentel Samuel D., 2023. "Robust inference for matching under rolling enrollment," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-19, January.
    12. Mellace, Giovanni & Ventura, Marco, 2023. "The short-run effects of public incentives for innovation in Italy," Economic Modelling, Elsevier, vol. 120(C).
    13. Martin Cousineau & Vedat Verter & Susan A. Murphy & Joelle Pineau, 2022. "Estimating causal effects with optimization-based methods: A review and empirical comparison," Papers 2203.00097, arXiv.org.
    14. Bo Zhang & Dylan S. Small, 2020. "A calibrated sensitivity analysis for matched observational studies with application to the effect of second‐hand smoke exposure on blood lead levels in children," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1285-1305, November.
    15. Phuong Nguyen-Hoang, 2012. "Fiscal effects of budget referendums: evidence from New York school districts," Public Choice, Springer, vol. 150(1), pages 77-95, January.
    16. Bryan Keller & Elizabeth Tipton, 2016. "Propensity Score Analysis in R," Journal of Educational and Behavioral Statistics, , vol. 41(3), pages 326-348, June.
    17. Gonzalez, Felipe & Prem, Mounu & von Dessauer, Cristine, 2023. "Empowerment or Indoctrination? Women Centers Under Dictatorship," SocArXiv 64mf9, Center for Open Science.
    18. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    19. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    20. Bono, Pierre-Henri & David, Quentin & Desbordes, Rodolphe & Py, Loriane, 2022. "Metro infrastructure and metropolitan attractiveness," Regional Science and Urban Economics, Elsevier, vol. 93(C).
    21. Futoshi Yamauchi & Yanyan Liu, 2013. "Impacts of an Early Stage Education Intervention on Students' Learning Achievement: Evidence from the Philippines," Journal of Development Studies, Taylor & Francis Journals, vol. 49(2), pages 208-222, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:447-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.