Stable Weights that Balance Covariates for Estimation With Incomplete Outcome Data
Author
Abstract
Suggested Citation
DOI: 10.1080/01621459.2015.1023805
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009.
"Dealing with limited overlap in estimation of average treatment effects,"
Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
- Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2004. "Dealing with Limited Overlap in Estimation of Average Treatment Effects," Working Papers 0716, University of Miami, Department of Economics, revised 12 Jun 2007.
- Hotz, V. Joseph & Crump, Richard K. & Mitnik, Oscar A. & Imbens, Guido, 2009. "Dealing with Limited Overlap in Estimation of Average Treatment Effects," Scholarly Articles 3007645, Harvard University Department of Economics.
- Robert MacCoun, 2003. "Experimental and Quasi-Experimental Designs for Generalized Causal Inference , by William R. Shadish, Thomas D. Cook, and Donald T. Campbell. Boston: Houghton Mifflin, 2001, 623 pp., $65.56," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 22(2), pages 330-332.
- Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
- Zhiqiang Tan, 2010. "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika, Biometrika Trust, vol. 97(3), pages 661-682.
- Joffe, Marshall M. & Ten Have, Thomas R. & Feldman, Harold I. & Kimmel, Stephen E., 2004. "Model Selection, Confounder Control, and Marginal Structural Models: Review and New Applications," The American Statistician, American Statistical Association, vol. 58, pages 272-279, November.
- Andrea Rotnitzky & Quanhong Lei & Mariela Sued & James M. Robins, 2012. "Improved double-robust estimation in missing data and causal inference models," Biometrika, Biometrika Trust, vol. 99(2), pages 439-456.
- José R. Zubizarreta, 2012. "Using Mixed Integer Programming for Matching in an Observational Study of Kidney Failure After Surgery," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1360-1371, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ao Yuan & Anqi Yin & Ming T. Tan, 2021. "Enhanced Doubly Robust Procedure for Causal Inference," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 454-478, December.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2018.
"Approximate residual balancing: debiased inference of average treatment effects in high dimensions,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2016. "Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions," Papers 1604.07125, arXiv.org, revised Jan 2018.
- Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
- Siying Guo & Jianxuan Liu & Qiu Wang, 2022. "Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching," Annals of Data Science, Springer, vol. 9(5), pages 967-982, October.
- Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
- Difang Huang & Jiti Gao & Tatsushi Oka, 2022.
"Semiparametric Single-Index Estimation for Average Treatment Effects,"
Papers
2206.08503, arXiv.org, revised Apr 2024.
- Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Monash Econometrics and Business Statistics Working Papers 10/22, Monash University, Department of Econometrics and Business Statistics.
- Chi Wang & Giovanni Parmigiani & Francesca Dominici, 2012. "Rejoinder: Bayesian Effect Estimation Accounting for Adjustment Uncertainty," Biometrics, The International Biometric Society, vol. 68(3), pages 680-686, September.
- Han, Peisong, 2012. "A note on improving the efficiency of inverse probability weighted estimator using the augmentation term," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2221-2228.
- Karel Vermeulen & Stijn Vansteelandt, 2015. "Bias-Reduced Doubly Robust Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1024-1036, September.
- Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
- Lateef B. Amusa & Temesgen Zewotir & Delia North, 2019. "A Weighted Covariate Balancing Method of Estimating Causal Effects in Case-Control Studies," Modern Applied Science, Canadian Center of Science and Education, vol. 13(4), pages 1-40, April.
- Słoczyński, Tymon & Wooldridge, Jeffrey M., 2018.
"A General Double Robustness Result For Estimating Average Treatment Effects,"
Econometric Theory, Cambridge University Press, vol. 34(1), pages 112-133, February.
- Sloczynski, Tymon & Wooldridge, Jeffrey M., 2014. "A General Double Robustness Result for Estimating Average Treatment Effects," IZA Discussion Papers 8084, Institute of Labor Economics (IZA).
- Peisong Han, 2016. "Combining Inverse Probability Weighting and Multiple Imputation to Improve Robustness of Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 246-260, March.
- Huiming Lin & Bo Fu & Guoyou Qin & Zhongyi Zhu, 2017. "Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts," Biometrics, The International Biometric Society, vol. 73(4), pages 1132-1139, December.
- Martin Huber & Michael Lechner & Andreas Steinmayr, 2015.
"Radius matching on the propensity score with bias adjustment: tuning parameters and finite sample behaviour,"
Empirical Economics, Springer, vol. 49(1), pages 1-31, August.
- Huber, Martin & Lechner, Michael & Steinmayr, Andreas, 2012. "Radius matching on the propensity score with bias adjustment: finite sample behaviour, tuning parameters and software implementation," Economics Working Paper Series 1226, University of St. Gallen, School of Economics and Political Science.
- Colin B. Fogarty & Mark E. Mikkelsen & David F. Gaieski & Dylan S. Small, 2016. "Discrete Optimization for Interpretable Study Populations and Randomization Inference in an Observational Study of Severe Sepsis Mortality," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 447-458, April.
- Sun Hao & Ertefaie Ashkan & Lu Xin & Johnson Brent A., 2020. "Improved Doubly Robust Estimation in Marginal Mean Models for Dynamic Regimes," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 300-314, January.
- Jianxuan Liu & Yanyuan Ma & Lan Wang, 2018. "An alternative robust estimator of average treatment effect in causal inference," Biometrics, The International Biometric Society, vol. 74(3), pages 910-923, September.
- Harsh Parikh & Cynthia Rudin & Alexander Volfovsky, 2018. "MALTS: Matching After Learning to Stretch," Papers 1811.07415, arXiv.org, revised Jun 2023.
- Chen, Xiaohong & Liu, Ying & Ma, Shujie & Zhang, Zheng, 2024. "Causal inference of general treatment effects using neural networks with a diverging number of confounders," Journal of Econometrics, Elsevier, vol. 238(1).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:511:p:910-922. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.