IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v11y2023i1p19n1.html
   My bibliography  Save this article

Robust inference for matching under rolling enrollment

Author

Listed:
  • Glazer Amanda K.

    (Department of Statistics, University of California, Berkeley, 367 Evans Hall, Berkeley, CA 94720, USA)

  • Pimentel Samuel D.

    (Department of Statistics, University of California, Berkeley, 367 Evans Hall, Berkeley, CA 94720, USA)

Abstract

Matching in observational studies faces complications when units enroll in treatment on a rolling basis. While each treated unit has a specific time of entry into the study, control units each have many possible comparison, or “pseudo-treatment,” times. Valid inference must account for correlations between repeated measures for a single unit, and researchers must decide how flexibly to match across time and units. We provide three important innovations. First, we introduce a new matched design, GroupMatch with instance replacement, allowing maximum flexibility in control selection. This new design searches over all possible comparison times for each treated-control pairing and is more amenable to analysis than past methods. Second, we propose a block bootstrap approach for inference in matched designs with rolling enrollment and demonstrate that it accounts properly for complex correlations across matched sets in our new design and several other contexts. Third, we develop a falsification test to detect violations of the timepoint agnosticism assumption, which is needed to permit flexible matching across time. We demonstrate the practical value of these tools via simulations and a case study of the impact of short-term injuries on batting performance in major league baseball.

Suggested Citation

  • Glazer Amanda K. & Pimentel Samuel D., 2023. "Robust inference for matching under rolling enrollment," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-19, January.
  • Handle: RePEc:bpj:causin:v:11:y:2023:i:1:p:19:n:1
    DOI: 10.1515/jci-2022-0055
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2022-0055
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2022-0055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Suresh Naidu & Pascual Restrepo & James A. Robinson, 2019. "Democracy Does Cause Growth," Journal of Political Economy, University of Chicago Press, vol. 127(1), pages 47-100.
    2. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    3. Alberto Abadie & Guido W. Imbens, 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 1-11, January.
    4. Alberto Abadie & Guido W. Imbens, 2008. "On the Failure of the Bootstrap for Matching Estimators," Econometrica, Econometric Society, vol. 76(6), pages 1537-1557, November.
    5. Keele, Luke, 2015. "The Statistics of Causal Inference: A View from Political Methodology," Political Analysis, Cambridge University Press, vol. 23(3), pages 313-335, July.
    6. Li Y.P. & Propert K. J. & Rosenbaum P. R., 2001. "Balanced Risk Set Matching," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 870-882, September.
    7. Alberto Abadie & Jann Spiess, 2022. "Robust Post-Matching Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 983-995, April.
    8. Xinran Li & Peng Ding, 2017. "General Forms of Finite Population Central Limit Theorems with Applications to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1759-1769, October.
    9. Ben B. Hansen, 2004. "Full Matching in an Observational Study of Coaching for the SAT," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 609-618, January.
    10. Alberto Abadie & Guido W. Imbens, 2012. "A Martingale Representation for Matching Estimators," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 833-843, June.
    11. Ho, Daniel E. & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2007. "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis, Cambridge University Press, vol. 15(3), pages 199-236, July.
    12. Rosenbaum, Paul R. & Ross, Richard N. & Silber, Jeffrey H., 2007. "Minimum Distance Matched Sampling With Fine Balance in an Observational Study of Treatment for Ovarian Cancer," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 75-83, March.
    13. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    14. José R. Zubizarreta, 2012. "Using Mixed Integer Programming for Matching in an Observational Study of Kidney Failure After Surgery," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1360-1371, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    2. Zhexiao Lin & Peng Ding & Fang Han, 2021. "Estimation based on nearest neighbor matching: from density ratio to average treatment effect," Papers 2112.13506, arXiv.org.
    3. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Gold-Mining Pollution Exposure, Health Effects and Private Healthcare Expenditure in Tanzania," MPRA Paper 108800, University Library of Munich, Germany.
    4. Yihui He & Fang Han, 2023. "On propensity score matching with a diverging number of matches," Papers 2310.14142, arXiv.org, revised Nov 2023.
    5. Songliang Chen & Fang Han, 2024. "On the limiting variance of matching estimators," Papers 2411.05758, arXiv.org.
    6. Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
    7. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    8. Ziming Lin & Fang Han, 2024. "On the consistency of bootstrap for matching estimators," Papers 2410.23525, arXiv.org, revised Nov 2024.
    9. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
    10. Fredrik Savje, 2019. "On the inconsistency of matching without replacement," Papers 1907.07288, arXiv.org, revised Jun 2021.
    11. Ferman, Bruno, 2021. "Matching estimators with few treated and many control observations," Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.
    12. Fervers, Lukas, 2018. "Can public employment schemes break the negative spiral of long-term unemployment, social exclusion and loss of skills? Evidence from Germany," Journal of Economic Psychology, Elsevier, vol. 67(C), pages 18-33.
    13. Bodory, Hugo & Camponovo, Lorenzo & Huber, Martin & Lechner, Michael, 2024. "Nonparametric bootstrap for propensity score matching estimators," Statistics & Probability Letters, Elsevier, vol. 208(C).
    14. Jason J. Sauppe & Sheldon H. Jacobson, 2017. "The role of covariate balance in observational studies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 323-344, June.
    15. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    16. Huber, Martin & Camponovo, Lorenzo & Bodory, Hugo & Lechner, Michael, 2016. "A wild bootstrap algorithm for propensity score matching estimators," FSES Working Papers 470, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    17. Pashley Nicole E. & Basse Guillaume W. & Miratrix Luke W., 2021. "Conditional as-if analyses in randomized experiments," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 264-284, January.
    18. Taisuke Otsu & Yoshiyasu Rai, 2017. "Bootstrap Inference of Matching Estimators for Average Treatment Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1720-1732, October.
    19. Martin Cousineau & Vedat Verter & Susan A. Murphy & Joelle Pineau, 2022. "Estimating causal effects with optimization-based methods: A review and empirical comparison," Papers 2203.00097, arXiv.org.
    20. José R. Zubizarreta, 2012. "Using Mixed Integer Programming for Matching in an Observational Study of Kidney Failure After Surgery," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1360-1371, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:11:y:2023:i:1:p:19:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.