IDEAS home Printed from https://ideas.repec.org/p/boc/bost10/8.html
   My bibliography  Save this paper

CEM: Coarsened Exact Matching in Stata

Author

Listed:
  • Matthew Blackwell

    (Harvard University)

  • Stefano Iacus

    (Universita degli Studi di Milano, Italy)

  • Gary King

    (Harvard University)

  • Giuseppe Porro

    (Universita degli Studi di Trieste, Italy)

Abstract

We introduce a Stata implementation of coarsened exact matching, a new method for improving the estimation of causal effects by reducing imbalance in covariates between treated and control groups. Coarsened exact matching is faster, is easier to use and understand, requires fewer assumptions, is more easily automated, and possesses more attractive statistical properties for many applications than do existing matching methods. In coarsened exact matching, users temporarily coarsen their data, exact match on these coarsened data, and then run their analysis on the uncoarsened, matched data. Coarsened exact matching bounds the degree of model dependence and causal effect estimation error by ex ante user choice, is monotonic imbalance bounding (so that reducing the maximum imbalance on one variable has no effect on others), does not require a separate procedure to restrict data to common support, meets the congruence principle, is approximately invariant to measurement error, balances all nonlinearities and interactions in sample (i.e., not merely in expectation), and works with multiply imputed datasets. Other matching methods inherit many of the coarsened exact matching method’s properties when applied to further match data preprocessed by coarsened exact matching.

Suggested Citation

  • Matthew Blackwell & Stefano Iacus & Gary King & Giuseppe Porro, 2010. "CEM: Coarsened Exact Matching in Stata," BOS10 Stata Conference 8, Stata Users Group.
  • Handle: RePEc:boc:bost10:8
    as

    Download full text from publisher

    File URL: http://repec.org/bost10/cem-stconf.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    2. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    3. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    4. Giuseppe Porro & Stefano Maria Iacus, 2009. "Random Recursive Partitioning: a matching method for the estimation of the average treatment effect," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 163-185.
    5. Stefano Iacus & Gary King & Giuseppe Porro, 2008. "Matching for Causal Inference Without Balance Checking," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1073, Universitá degli Studi di Milano.
    6. King, Gary & Honaker, James & Joseph, Anne & Scheve, Kenneth, 2001. "Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation," American Political Science Review, Cambridge University Press, vol. 95(1), pages 49-69, March.
    7. Kosuke Imai & Gary King & Elizabeth A. Stuart, 2008. "Misunderstandings between experimentalists and observationalists about causal inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 481-502, April.
    8. Ho, Daniel E. & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2007. "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis, Cambridge University Press, vol. 15(3), pages 199-236, July.
    9. King, Gary & Zeng, Langche, 2006. "The Dangers of Extreme Counterfactuals," Political Analysis, Cambridge University Press, vol. 14(2), pages 131-159, April.
    10. Sascha O. Becker & Andrea Ichino, 2002. "Estimation of average treatment effects based on propensity scores," Stata Journal, StataCorp LP, vol. 2(4), pages 358-377, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    2. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    3. Wichman, Casey J. & Ferraro, Paul J., 2017. "A cautionary tale on using panel data estimators to measure program impacts," Economics Letters, Elsevier, vol. 151(C), pages 82-90.
    4. Tymon Słoczyński, 2015. "The Oaxaca–Blinder Unexplained Component as a Treatment Effects Estimator," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(4), pages 588-604, August.
    5. Dettmann, Eva & Becker, Claudia & Schmeißer, Christian, 2010. "Is there a Superior Distance Function for Matching in Small Samples?," IWH Discussion Papers 3/2010, Halle Institute for Economic Research (IWH).
    6. Patrick Christian Feihle & Jochen Lawrenz, 2017. "The Issuance of German SME Bonds and its Impact on Operating Performance," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 18(3), pages 227-259, August.
    7. Ferraro, Paul J. & Miranda, Juan José, 2014. "The performance of non-experimental designs in the evaluation of environmental programs: A design-replication study using a large-scale randomized experiment as a benchmark," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 344-365.
    8. Iacus, Stefano & Porro, Giuseppe, 2008. "Invariant and Metric Free Proximities for Data Matching: An R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i11).
    9. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
    10. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    11. Schilling, Brian J. & Attavanich, Witsanu & Jin, Yanhong, 2014. "Does Agritourism Enhance Farm Profitability?," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(1), pages 1-28, April.
    12. Gary King & Christopher Lucas & Richard A. Nielsen, 2017. "The Balance‐Sample Size Frontier in Matching Methods for Causal Inference," American Journal of Political Science, John Wiley & Sons, vol. 61(2), pages 473-489, April.
    13. Jason J. Sauppe & Sheldon H. Jacobson, 2017. "The role of covariate balance in observational studies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 323-344, June.
    14. Adeola Oyenubi & Martin Wittenberg, 2021. "Does the choice of balance-measure matter under genetic matching?," Empirical Economics, Springer, vol. 61(1), pages 489-502, July.
    15. Iacus, Stefano & King, Gary & Porro, Giuseppe, 2009. "cem: Software for Coarsened Exact Matching," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 30(i09).
    16. Eliana V. Jimenez & Richard P.C. Brown, 2008. "Assessing the poverty impacts of remittances with alternative counterfactual income estimates," Discussion Papers Series 375, School of Economics, University of Queensland, Australia.
    17. Marco Caliendo & Stefan Tübbicke, 2020. "New evidence on long-term effects of start-up subsidies: matching estimates and their robustness," Empirical Economics, Springer, vol. 59(4), pages 1605-1631, October.
    18. Iacus, Stefano M. & Porro, Giuseppe, 2007. "Missing data imputation, matching and other applications of random recursive partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 773-789, October.
    19. Alberto Abadie & Guido W. Imbens, 2002. "Simple and Bias-Corrected Matching Estimators for Average Treatment Effects," NBER Technical Working Papers 0283, National Bureau of Economic Research, Inc.
    20. Mellace, Giovanni & Ventura, Marco, 2019. "Intended and unintended effects of public incentives for innovation. Quasi-experimental evidence from Italy," Discussion Papers on Economics 9/2019, University of Southern Denmark, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:bost10:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.