IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i512p1670-1683.html
   My bibliography  Save this article

Smoothed and Corrected Score Approach to Censored Quantile Regression With Measurement Errors

Author

Listed:
  • Yuanshan Wu
  • Yanyuan Ma
  • Guosheng Yin

Abstract

Censored quantile regression is an important alternative to the Cox proportional hazards model in survival analysis. In contrast to the usual central covariate effects, quantile regression can effectively characterize the covariate effects at different quantiles of the survival time. When covariates are measured with errors, it is known that naively treating mismeasured covariates as error-free would result in estimation bias. Under censored quantile regression, we propose smoothed and corrected estimating equations to obtain consistent estimators. We establish consistency and asymptotic normality for the proposed estimators of quantile regression coefficients. Compared with the naive estimator, the proposed method can eliminate the estimation bias under various measurement error distributions and model error distributions. We conduct simulation studies to examine the finite-sample properties of the new method and apply it to a lung cancer study. Supplementary materials for this article are available online.

Suggested Citation

  • Yuanshan Wu & Yanyuan Ma & Guosheng Yin, 2015. "Smoothed and Corrected Score Approach to Censored Quantile Regression With Measurement Errors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1670-1683, December.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:512:p:1670-1683
    DOI: 10.1080/01621459.2014.989323
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.989323
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.989323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joel L. Horowitz, 1998. "Bootstrap Methods for Median Regression Models," Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
    2. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
    3. Zhezhen Jin, 2003. "Rank-based inference for the accelerated failure time model," Biometrika, Biometrika Trust, vol. 90(2), pages 341-353, June.
    4. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275.
    5. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    6. Wei, Ying & Carroll, Raymond J., 2009. "Quantile Regression With Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1129-1143.
    7. Heejung Bang & Anastasios A. Tsiatis, 2002. "Median Regression with Censored Cost Data," Biometrics, The International Biometric Society, vol. 58(3), pages 643-649, September.
    8. Yi Li & Louise Ryan, 2004. "Survival Analysis With Heterogeneous Covariate Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 724-735, January.
    9. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    10. Wang, Huixia Judy & Wang, Lan, 2009. "Locally Weighted Censored Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1117-1128.
    11. Huixia Judy Wang & Leonard A. Stefanski & Zhongyi Zhu, 2012. "Corrected-loss estimation for quantile regression with covariate measurement errors," Biometrika, Biometrika Trust, vol. 99(2), pages 405-421.
    12. Peng, Limin & Huang, Yijian, 2008. "Survival Analysis With Quantile Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 637-649, June.
    13. Lindgren, Anna, 1997. "Quantile regression with censored data using generalized L1 minimization," Computational Statistics & Data Analysis, Elsevier, vol. 23(4), pages 509-524, February.
    14. Hong, Han & Tamer, Elie, 2003. "A simple estimator for nonlinear error in variable models," Journal of Econometrics, Elsevier, vol. 117(1), pages 1-19, November.
    15. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    16. Khan, Shakeeb & Powell, James L., 2001. "Two-step estimation of semiparametric censored regression models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 73-110, July.
    17. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    18. Hong H. & Chernozhukov V., 2002. "Three-Step Censored Quantile Regression and Extramarital Affairs," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 872-882, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Hanbing & Zhang, Yuanyuan & Li, Yehua & Lian, Heng, 2023. "Semiparametric function-on-function quantile regression model with dynamic single-index interactions," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    2. Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    3. Firpo, Sergio & Galvao, Antonio F. & Song, Suyong, 2017. "Measurement errors in quantile regression models," Journal of Econometrics, Elsevier, vol. 198(1), pages 146-164.
    4. Kean Ming Tan & Lan Wang & Wen‐Xin Zhou, 2022. "High‐dimensional quantile regression: Convolution smoothing and concave regularization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 205-233, February.
    5. He, Xuming & Pan, Xiaoou & Tan, Kean Ming & Zhou, Wen-Xin, 2023. "Smoothed quantile regression with large-scale inference," Journal of Econometrics, Elsevier, vol. 232(2), pages 367-388.
    6. Hu, Yingyao, 2017. "The Econometrics of Unobservables -- Latent Variable and Measurement Error Models and Their Applications in Empirical Industrial Organization and Labor Economics [The Econometrics of Unobservables]," Economics Working Paper Archive 64578, The Johns Hopkins University,Department of Economics, revised 2021.
    7. Zexi Cai & Tony Sit, 2023. "On interquantile smoothness of censored quantile regression with induced smoothing," Biometrics, The International Biometric Society, vol. 79(4), pages 3549-3563, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Guixian & He, Xuming & Portnoy, Stephen, 2012. "Quantile regression with doubly censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 797-812.
    2. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    3. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    4. Chen, Songnian, 2018. "Sequential estimation of censored quantile regression models," Journal of Econometrics, Elsevier, vol. 207(1), pages 30-52.
    5. Fan, Yanqin & Liu, Ruixuan, 2018. "Partial identification and inference in censored quantile regression," Journal of Econometrics, Elsevier, vol. 206(1), pages 1-38.
    6. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
    7. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2013. "Global Bahadur Representation For Nonparametric Censored Regression Quantiles And Its Applications," Econometric Theory, Cambridge University Press, vol. 29(5), pages 941-968, October.
    8. Yanlin Tang & Huixia Wang & Xuming He & Zhongyi Zhu, 2012. "An informative subset-based estimator for censored quantile regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 635-655, December.
    9. Li, Tong & Oka, Tatsushi, 2015. "Set identification of the censored quantile regression model for short panels with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 363-377.
    10. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2017. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Discussion Papers ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Xiaofeng Lv & Gupeng Zhang & Xinkuo Xu & Qinghai Li, 2019. "Weighted quantile regression for censored data with application to export duration data," Statistical Papers, Springer, vol. 60(4), pages 1161-1192, August.
    12. Machado, José A.F. & Santos Silva, J.M.C. & Wei, Kehai, 2016. "Quantiles, corners, and the extensive margin of trade," European Economic Review, Elsevier, vol. 89(C), pages 73-84.
    13. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    14. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2022. "Instrumental variable quantile regression under random right censoring," Papers 2209.01429, arXiv.org, revised Feb 2023.
    15. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    16. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    17. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    18. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.
    19. Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.
    20. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:512:p:1670-1683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.