IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v67y2021i1p220-241.html
   My bibliography  Save this article

Small-Data, Large-Scale Linear Optimization with Uncertain Objectives

Author

Listed:
  • Vishal Gupta

    (Data Science and Operations, University of Southern California Marshall School of Business, Los Angeles, California 90089)

  • Paat Rusmevichientong

    (Data Science and Operations, University of Southern California Marshall School of Business, Los Angeles, California 90089)

Abstract

Optimization applications often depend on a huge number of uncertain parameters. In many contexts, however, the amount of relevant data per parameter is small, and hence, we may only have imprecise estimates. We term this setting—in which the number of uncertainties is large but all estimates have low precision—the small-data, large-scale regime . We formalize a model for this new regime, focusing on optimization problems with uncertain linear objectives. We show that common data-driven methods, such as sample average approximation, data-driven robust optimization, and certain regularized policies, may perform poorly in this new setting. We then propose a novel framework for selecting a data-driven policy from a given policy class. As with the aforementioned data-driven methods, our new policy enjoys provably good performance in the large-sample regime. Unlike these methods, we show that in the small-data, large-scale regime, our data-driven policy performs comparably to an oracle best-in-class policy under some mild conditions. We strengthen this result for linear optimization problems and two natural policy classes, the first inspired by the empirical Bayes literature and the second by regularization techniques. For both classes, the suboptimality gap between our proposed policy and the oracle policy decays exponentially fast in the number of uncertain parameters even for a fixed amount of data. Thus, these policies retain the strong large-sample performance of traditional methods and additionally enjoy provably strong performance in the small-data, large-scale regime. Numerical experiments confirm the significant benefits of our methods.

Suggested Citation

  • Vishal Gupta & Paat Rusmevichientong, 2021. "Small-Data, Large-Scale Linear Optimization with Uncertain Objectives," Management Science, INFORMS, vol. 67(1), pages 220-241, January.
  • Handle: RePEc:inm:ormnsc:v:67:y:2021:i:1:p:220-241
    DOI: 10.1287/mnsc.2019.3554
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/mnsc.2019.3554
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2019.3554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vishal Gupta, 2019. "Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(9), pages 4242-4260, September.
    2. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    3. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    4. Xin Chen & Melvyn Sim & Peng Sun, 2007. "A Robust Optimization Perspective on Stochastic Programming," Operations Research, INFORMS, vol. 55(6), pages 1058-1071, December.
    5. Xianchao Xie & S. C. Kou & Lawrence D. Brown, 2012. "SURE Estimates for a Heteroscedastic Hierarchical Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1465-1479, December.
    6. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    7. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corredera, Alberto & Ruiz, Carlos, 2023. "Prescriptive selection of machine learning hyperparameters with applications in power markets: Retailer’s optimal trading," European Journal of Operational Research, Elsevier, vol. 306(1), pages 370-388.
    2. Hamsa Bastani & Kimon Drakopoulos & Vishal Gupta & Jon Vlachogiannis & Christos Hadjichristodoulou & Pagona Lagiou & Gkikas Magiorkinis & Dimitrios Paraskevis & Sotirios Tsiodras, 2022. "Interpretable Operations Research for High-Stakes Decisions: Designing the Greek COVID-19 Testing System," Interfaces, INFORMS, vol. 52(5), pages 398-411, September.
    3. Corredera, Alberto, 2022. "Prescriptive selection of machine learning hyperparameters with applications in power markets: retailer's optimal trading," DES - Working Papers. Statistics and Econometrics. WS 33693, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Ren, Ke & Bidkhori, Hoda, 2023. "A study of data-driven distributionally robust optimization with incomplete joint data under finite support," European Journal of Operational Research, Elsevier, vol. 305(2), pages 754-765.
    5. Vishal Gupta & Nathan Kallus, 2022. "Data Pooling in Stochastic Optimization," Management Science, INFORMS, vol. 68(3), pages 1595-1615, March.
    6. John R. Birge, 2023. "Uses of Sub-sample Estimates to Reduce Errors in Stochastic Optimization Models," Papers 2310.07052, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shipra Agrawal & Yichuan Ding & Amin Saberi & Yinyu Ye, 2012. "Price of Correlations in Stochastic Optimization," Operations Research, INFORMS, vol. 60(1), pages 150-162, February.
    2. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    3. Dimitris Bertsimas & Melvyn Sim & Meilin Zhang, 2019. "Adaptive Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(2), pages 604-618, February.
    4. Huan Xu & Constantine Caramanis & Shie Mannor, 2012. "Optimization Under Probabilistic Envelope Constraints," Operations Research, INFORMS, vol. 60(3), pages 682-699, June.
    5. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    6. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    7. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    8. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    9. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    10. Fanwen Meng & Jin Qi & Meilin Zhang & James Ang & Singfat Chu & Melvyn Sim, 2015. "A Robust Optimization Model for Managing Elective Admission in a Public Hospital," Operations Research, INFORMS, vol. 63(6), pages 1452-1467, December.
    11. Haolin Ruan & Zhi Chen & Chin Pang Ho, 2023. "Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1002-1023, September.
    12. Joel Goh & Melvyn Sim, 2011. "Robust Optimization Made Easy with ROME," Operations Research, INFORMS, vol. 59(4), pages 973-985, August.
    13. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    14. Long He & Ho-Yin Mak & Ying Rong & Zuo-Jun Max Shen, 2017. "Service Region Design for Urban Electric Vehicle Sharing Systems," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 309-327, May.
    15. Evers, L. & Glorie, K.M. & van der Ster, S. & Barros, A.I. & Monsuur, H., 2012. "The Orienteering Problem under Uncertainty Stochastic Programming and Robust Optimization compared," Econometric Institute Research Papers EI 2012-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Shahabi, Mehrdad & Unnikrishnan, Avinash, 2014. "Robust hub network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 356-373.
    17. Hua Sun & Ziyou Gao & W. Szeto & Jiancheng Long & Fangxia Zhao, 2014. "A Distributionally Robust Joint Chance Constrained Optimization Model for the Dynamic Network Design Problem under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 14(3), pages 409-433, December.
    18. Zhu, Ning & Fu, Chenyi & Zhang, Xuanyi & Ma, Shoufeng, 2022. "A network sensor location problem for link flow observability and estimation," European Journal of Operational Research, Elsevier, vol. 300(2), pages 428-448.
    19. Jia Shu & Miao Song, 2014. "Dynamic Container Deployment: Two-Stage Robust Model, Complexity, and Computational Results," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 135-149, February.
    20. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:67:y:2021:i:1:p:220-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.