IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v161y2017icp1-11.html
   My bibliography  Save this article

SURE estimates under dependence and heteroscedasticity

Author

Listed:
  • Kong, Xinbing
  • Liu, Zhi
  • Zhao, Peng
  • Zhou, Wang

Abstract

The multivariate Bayesian hierarchical model with independent means has been studied extensively and is widely used in practice. In contrast, the case of dependent means has received scant attention, even though multivariate observations are often correlated. In this paper, we investigate a multivariate heteroscedastic Bayesian hierarchical model in which an informative prior with equicorrelated means is assumed. We estimate the mean vector by the shrinkage estimator based on Stein’s unbiased risk estimation (SURE). It is shown that the squared error loss of the SURE estimator is close to that of an oracle estimator as the number of means grows. Our SURE estimator includes the SURE estimator under independence considered by Xie et al. (2012) as a special case. The finite-sample performance of our estimator is explored via simulations and two real data sets are used for illustration purposes.

Suggested Citation

  • Kong, Xinbing & Liu, Zhi & Zhao, Peng & Zhou, Wang, 2017. "SURE estimates under dependence and heteroscedasticity," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 1-11.
  • Handle: RePEc:eee:jmvana:v:161:y:2017:i:c:p:1-11
    DOI: 10.1016/j.jmva.2017.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17304177
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2017.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xianchao Xie & S. C. Kou & Lawrence D. Brown, 2012. "SURE Estimates for a Heteroscedastic Hierarchical Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1465-1479, December.
    2. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    3. Efron, Bradley, 2007. "Correlation and Large-Scale Simultaneous Significance Testing," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 93-103, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    2. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    3. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    4. Hsiao-Fen Hsiao & Jiang-Chuan Huang & Zheng-Wei Lin, 2020. "Portfolio construction using bootstrapping neural networks: evidence from global stock market," Review of Derivatives Research, Springer, vol. 23(3), pages 227-247, October.
    5. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    6. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    7. David Daewhan Cho, 2004. "Uncertainty in Second Moments: Implications for Portfolio Allocation," Econometric Society 2004 Far Eastern Meetings 433, Econometric Society.
    8. Rudi Schafer & Nils Fredrik Nilsson & Thomas Guhr, 2010. "Power mapping with dynamical adjustment for improved portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 107-119.
    9. Egelkraut, Thorsten M. & Woodard, Joshua D. & Garcia, Philip & Pennings, Joost M.E., 2005. "Portfolio Diversification with Commodity Futures: Properties of Levered Futures," 2005 Conference, April 18-19, 2005, St. Louis, Missouri 19047, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    10. Wei Shi & Scott H. Irwin, 2005. "Optimal Hedging with a Subjective View: An Empirical Bayesian Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 918-930.
    11. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    12. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    13. Walsh, David M. & Walsh, Kathleen D. & Evans, John P., 1998. "Assessing estimation error in a tracking error variance minimisation framework," Pacific-Basin Finance Journal, Elsevier, vol. 6(1-2), pages 175-192, May.
    14. Stambaugh, Robert F., 1997. "Analyzing investments whose histories differ in length," Journal of Financial Economics, Elsevier, vol. 45(3), pages 285-331, September.
    15. Frahm, Gabriel & Memmel, Christoph, 2008. "Dominating estimators for the global minimum variance portfolio," Discussion Papers in Econometrics and Statistics 2/08, University of Cologne, Institute of Econometrics and Statistics.
    16. Jochmans, Koen & Weidner, Martin, 2024. "Inference On A Distribution From Noisy Draws," Econometric Theory, Cambridge University Press, vol. 40(1), pages 60-97, February.
    17. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    18. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    19. Sumanjay Dutta & Shashi Jain, 2023. "Precision versus Shrinkage: A Comparative Analysis of Covariance Estimation Methods for Portfolio Allocation," Papers 2305.11298, arXiv.org.
    20. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:161:y:2017:i:c:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.