IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i500p1324-1338.html
   My bibliography  Save this article

Nonparametric Estimation for Censored Mixture Data With Application to the Cooperative Huntington’s Observational Research Trial

Author

Listed:
  • Yuanjia Wang
  • Tanya P. Garcia
  • Yanyuan Ma

Abstract

This work presents methods for estimating genotype-specific outcome distributions from genetic epidemiology studies where the event times are subject to right censoring, the genotypes are not directly observed, and the data arise from a mixture of scientifically meaningful subpopulations. Examples of such studies include kin-cohort studies and quantitative trait locus (QTL) studies. Current methods for analyzing censored mixture data include two types of nonparametric maximum likelihood estimators (NPMLEs; Type I and Type II) that do not make parametric assumptions on the genotype-specific density functions. Although both NPMLEs are commonly used, we show that one is inefficient and the other inconsistent. To overcome these deficiencies, we propose three classes of consistent nonparametric estimators that do not assume parametric density models and are easy to implement. They are based on inverse probability weighting (IPW), augmented IPW (AIPW), and nonparametric imputation (IMP). AIPW achieves the efficiency bound without additional modeling assumptions. Extensive simulation experiments demonstrate satisfactory performance of these estimators even when the data are heavily censored. We apply these estimators to the Cooperative Huntington’s Observational Research Trial (COHORT), and provide age-specific estimates of the effect of mutation in the Huntington gene on mortality using a sample of family members. The close approximation of the estimated noncarrier survival rates to that of the U.S. population indicates small ascertainment bias in the COHORT family sample. Our analyses underscore an elevated risk of death in Huntington gene mutation carriers compared with that in noncarriers for a wide age range, and suggest that the mutation equally affects survival rates in both genders. The estimated survival rates are useful in genetic counseling for providing guidelines on interpreting the risk of death associated with a positive genetic test, and in helping future subjects at risk to make informed decisions on whether to undergo genetic mutation testing. Technical details and additional numerical results are provided in the online supplementary materials.

Suggested Citation

  • Yuanjia Wang & Tanya P. Garcia & Yanyuan Ma, 2012. "Nonparametric Estimation for Censored Mixture Data With Application to the Cooperative Huntington’s Observational Research Trial," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1324-1338, December.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1324-1338
    DOI: 10.1080/01621459.2012.699353
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2012.699353
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2012.699353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhangsheng Yu & Xihong Lin, 2008. "Nonparametric regression using local kernel estimating equations for correlated failure time data," Biometrika, Biometrika Trust, vol. 95(1), pages 123-137.
    2. Zhao, Wei & Wu, Rongling, 2008. "Wavelet-Based Nonparametric Functional Mapping of Longitudinal Curves," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 714-725, June.
    3. Guoqing Diao & D. Y. Lin, 2005. "Semiparametric Methods for Mapping Quantitative Trait Loci with Censored Data," Biometrics, The International Biometric Society, vol. 61(3), pages 789-798, September.
    4. Yuanjia Wang & Lorraine N. Clark & Karen Marder & Daniel Rabinowitz, 2007. "Nonparametric estimation of age-at-onset distributions from censored kin-cohort data," Biometrika, Biometrika Trust, vol. 94(2), pages 403-114.
    5. Min Zhang & Anastasios A. Tsiatis & Marie Davidian, 2008. "Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 64(3), pages 707-715, September.
    6. Heejung Bang & Anastasios A. Tsiatis, 2002. "Median Regression with Censored Cost Data," Biometrics, The International Biometric Society, vol. 58(3), pages 643-649, September.
    7. D. Zeng & D. Y. Lin, 2007. "Maximum likelihood estimation in semiparametric regression models with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 507-564, September.
    8. Anastasios A. Tsiatis & Yanyuan Ma, 2004. "Locally efficient semiparametric estimators for functional measurement error models," Biometrika, Biometrika Trust, vol. 91(4), pages 835-848, December.
    9. Nilanjan Chatterjee & Sholom Wacholder, 2001. "A Marginal Likelihood Approach for Estimating Penetrance from Kin‐Cohort Designs," Biometrics, The International Biometric Society, vol. 57(1), pages 245-252, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    2. Xie, Shangyu & Wan, Alan T.K. & Zhou, Yong, 2015. "Quantile regression methods with varying-coefficient models for censored data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 154-172.
    3. Yanyuan Ma & Yuanjia Wang, 2014. "Estimating disease onset distribution functions in mutation carriers with censored mixture data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 1-23, January.
    4. Fei Jiang & Yanyuan Ma & J. Jack Lee, 2017. "A second-order semiparametric method for survival analysis, with application to an acquired immune deficiency syndrome clinical trial study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 833-846, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Chen & Li Hsu & Kathleen Malone, 2009. "A Frailty-Model-Based Approach to Estimating the Age-Dependent Penetrance Function of Candidate Genes Using Population-Based Case-Control Study Designs: An Application to Data on the BRCA1 Gene," Biometrics, The International Biometric Society, vol. 65(4), pages 1105-1114, December.
    2. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    3. Paola Berchialla & Veronica Sciannameo & Sara Urru & Corrado Lanera & Danila Azzolina & Dario Gregori & Ileana Baldi, 2021. "Adjustment for Baseline Covariates to Increase Efficiency in RCTs with Binary Endpoint: A Comparison of Bayesian and Frequentist Approaches," IJERPH, MDPI, vol. 18(15), pages 1-9, July.
    4. Mijeong Kim & Yanyuan Ma, 2012. "The efficiency of the second-order nonlinear least squares estimator and its extension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 751-764, August.
    5. Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
    6. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    7. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    8. Jin-Jian Hsieh & A. Adam Ding & Weijing Wang, 2011. "Regression Analysis for Recurrent Events Data under Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 719-729, September.
    9. Kyu Hyun Kim & Daniel J. Caplan & Sangwook Kang, 2023. "Smoothed quantile regression for censored residual life," Computational Statistics, Springer, vol. 38(2), pages 1001-1022, June.
    10. Yanqing Sun & Rajeshwari Sundaram & Yichuan Zhao, 2009. "Empirical Likelihood Inference for the Cox Model with Time‐dependent Coefficients via Local Partial Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 444-462, September.
    11. Li, Mengyan & Ma, Yanyuan & Li, Runze, 2019. "Semiparametric regression for measurement error model with heteroscedastic error," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 320-338.
    12. Sungwan Bang & Soo-Heang Eo & Yong Mee Cho & Myoungshic Jhun & HyungJun Cho, 2016. "Non-crossing weighted kernel quantile regression with right censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 100-121, January.
    13. Hennessy Jonathan & Dasgupta Tirthankar & Miratrix Luke & Pattanayak Cassandra & Sarkar Pradipta, 2016. "A Conditional Randomization Test to Account for Covariate Imbalance in Randomized Experiments," Journal of Causal Inference, De Gruyter, vol. 4(1), pages 61-80, March.
    14. Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
    15. Lola Etievant & Joshua N. Sampson & Mitchell H. Gail, 2023. "Increasing efficiency and reducing bias when assessing HPV vaccination efficacy by using nontargeted HPV strains," Biometrics, The International Biometric Society, vol. 79(2), pages 1534-1545, June.
    16. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.
    17. Tianchen Qian & Constantine Frangakis & Constantin Yiannoutsos, 2020. "Deductive Semiparametric Estimation in Double-Sampling Designs with Application to PEPFAR," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 417-445, December.
    18. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    19. Stoklosa, Jakub & Huang, Yih-Huei & Furlan, Elise & Hwang, Wen-Han, 2016. "On quadratic logistic regression models when predictor variables are subject to measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 109-121.
    20. Wenqin Pan & Donglin Zeng, 2011. "Estimating Mean Cost Using Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 996-1006, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1324-1338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.