IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i7p1391-1400.html
   My bibliography  Save this article

Estimation with left-truncated and right censored data: A comparison study

Author

Listed:
  • Ahmadi, Jafar
  • Doostparast, Mahdi
  • Parsian, Ahmad

Abstract

Estimation based on the left-truncated and right randomly censored data arising from a general family of distributions is considered. In the special case, when the random variables satisfy a proportional hazard model, the maximum likelihood estimators (MLEs) as well as the uniformly minimum variance unbiased estimators (UMVUEs) of the unknown parameters are obtained. Explicit expressions for the MLEs are obtained when the random variables follow an exponential distribution. In the latter case, three different estimators for the parameter of interest are proposed. These estimators are compared using the criteria of mean squared error (MSE) and Pitman measure of closeness (PMC). It is shown that shrinking does not always yield a better estimator.

Suggested Citation

  • Ahmadi, Jafar & Doostparast, Mahdi & Parsian, Ahmad, 2012. "Estimation with left-truncated and right censored data: A comparison study," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1391-1400.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:7:p:1391-1400
    DOI: 10.1016/j.spl.2012.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212001101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nandi, Swagata & Dewan, Isha, 2010. "An EM algorithm for estimating the parameters of bivariate Weibull distribution under random censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1559-1569, June.
    2. Shen, Pao-sheng, 2009. "Hazards regression for length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 457-465, February.
    3. Xiaodong Luo & Wei Yann Tsai, 2009. "Nonparametric estimation for right-censored length-biased data: a pseudo-partial likelihood approach," Biometrika, Biometrika Trust, vol. 96(4), pages 873-886.
    4. Hwang, Yi-Ting & Wang, Chun-chao, 2008. "A goodness of fit test for left-truncated and right-censored data," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2420-2425, October.
    5. Chiung-Yu Huang & Jing Qin, 2011. "Nonparametric estimation for length-biased and right-censored data," Biometrika, Biometrika Trust, vol. 98(1), pages 177-186.
    6. Pao-sheng Shen, 2011. "Nonparametric estimation with doubly censored and truncated data," Computational Statistics, Springer, vol. 26(1), pages 145-157, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doostparast, Mohammad & Kolahan, Farhad & Doostparast, Mahdi, 2014. "A reliability-based approach to optimize preventive maintenance scheduling for coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 98-106.
    2. Farouk Metiri & Halim Zeghdoudi & Abdelali Ezzebsa, 2022. "On the characterisation of X-Lindley distribution by truncated moments. Properties and application," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 97-109.
    3. N. Davarzani & L. Golparvar & A. Parsian & R. Peeters, 2017. "Estimation on dependent right censoring scheme in an ordinary bivariate geometric distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1369-1384, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacobo Uña-Álvarez, 2013. "Comments on: An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 414-418, September.
    2. Wang, Liang & Tripathi, Yogesh Mani & Dey, Sanku & Zhang, Chunfang & Wu, Ke, 2022. "Analysis of dependent left-truncated and right-censored competing risks data with partially observed failure causes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 285-307.
    3. Chengbo Li & Yong Zhou, 2021. "The estimation for the general additive–multiplicative hazard model using the length-biased survival data," Statistical Papers, Springer, vol. 62(1), pages 53-74, February.
    4. Zhang, Feipeng & Yang, Jiejing & Ye, Min, 2020. "A nonparametric maximum likelihood estimation for biased-sampling data with zero-inflated truncation," Economics Letters, Elsevier, vol. 194(C).
    5. Zhang, Feipeng & Peng, Heng & Zhou, Yong, 2016. "Composite partial likelihood estimation for length-biased and right-censored data with competing risks," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 160-176.
    6. Shen, Pao-sheng, 2009. "Semiparametric analysis of survival data with left truncation and right censoring," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4417-4432, October.
    7. Chi Hyun Lee & Jing Ning & Yu Shen, 2018. "Analysis of restricted mean survival time for length†biased data," Biometrics, The International Biometric Society, vol. 74(2), pages 575-583, June.
    8. Yi Xiong & W. John Braun & X. Joan Hu, 2021. "Estimating duration distribution aided by auxiliary longitudinal measures in presence of missing time origin," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 388-412, July.
    9. Yifan He & Yong Zhou, 2020. "Nonparametric and semiparametric estimators of restricted mean survival time under length-biased sampling," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 761-788, October.
    10. Micha Mandel & Jacobo de Uña†à lvarez & David K. Simon & Rebecca A. Betensky, 2018. "Inverse probability weighted Cox regression for doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 481-487, June.
    11. Saieed Ateya, 2014. "Maximum likelihood estimation under a finite mixture of generalized exponential distributions based on censored data," Statistical Papers, Springer, vol. 55(2), pages 311-325, May.
    12. Kwun Chuen Gary Chan, 2017. "Acceleration of Expectation-Maximization algorithm for length-biased right-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 102-112, January.
    13. Jung-Yu Cheng & Shinn-Jia Tzeng, 2014. "Quantile regression of right-censored length-biased data using the Buckley–James-type method," Computational Statistics, Springer, vol. 29(6), pages 1571-1592, December.
    14. Gongjun Xu & Tony Sit & Lan Wang & Chiung-Yu Huang, 2017. "Estimation and Inference of Quantile Regression for Survival Data Under Biased Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1571-1586, October.
    15. Xuerong Chen & Yeqian Liu & Jianguo Sun & Yong Zhou, 2016. "Semiparametric Quantile Regression Analysis of Right-censored and Length-biased Failure Time Data with Partially Linear Varying Effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 921-938, December.
    16. Shi, Jianhua & Chen, Xiaoping & Zhou, Yong, 2015. "The strong representation for the nonparametric estimator of length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 49-57.
    17. Balakrishnan, N. & So, H.Y. & Ling, M.H., 2015. "EM algorithm for one-shot device testing with competing risks under exponential distribution," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 129-140.
    18. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    19. Ma, Huijuan & Zhang, Feipeng & Zhou, Yong, 2015. "Composite estimating equation approach for additive risk model with length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 45-53.
    20. Yu-Jen Cheng & Mei-Cheng Wang, 2012. "Estimating Propensity Scores and Causal Survival Functions Using Prevalent Survival Data," Biometrics, The International Biometric Society, vol. 68(3), pages 707-716, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:7:p:1391-1400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.