IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v64y2002i2p189-205.html
   My bibliography  Save this article

Posterior probability intervals for wavelet thresholding

Author

Listed:
  • Stuart Barber
  • Guy P. Nason
  • Bernard W. Silverman

Abstract

Summary. We use cumulants to derive Bayesian credible intervals for wavelet regression estimates. The first four cumulants of the posterior distribution of the estimates are expressed in terms of the observed data and integer powers of the mother wavelet functions. These powers are closely approximated by linear combinations of wavelet scaling functions at an appropriate finer scale. Hence, a suitable modification of the discrete wavelet transform allows the posterior cumulants to be found efficiently for any given data set. Johnson transformations then yield the credible intervals themselves. Simulations show that these intervals have good coverage rates, even when the underlying function is inhomogeneous, where standard methods fail. In the case where the curve is smooth, the performance of our intervals remains competitive with established nonparametric regression methods.

Suggested Citation

  • Stuart Barber & Guy P. Nason & Bernard W. Silverman, 2002. "Posterior probability intervals for wavelet thresholding," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 189-205, May.
  • Handle: RePEc:bla:jorssb:v:64:y:2002:i:2:p:189-205
    DOI: 10.1111/1467-9868.00332
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00332
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Merlise Clyde & Edward I. George, 2000. "Flexible empirical Bayes estimation for wavelets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 681-698.
    2. I. D. Hill & R. Hill & R. L. Holder, 1976. "Fitting Johnson Curves by Moments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(2), pages 180-189, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Fryzlewicz & Guy P. Nason & Rainer Von Sachs, 2008. "A wavelet‐Fisz approach to spectrum estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 868-880, September.
    2. Lawrence Brown & Xin Fu & Linda Zhao, 2011. "Confidence intervals for nonparametric regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(1), pages 149-163.
    3. Fryzlewicz, Piotr & Nason, Guy P. & von Sachs, Rainer, 2008. "A wavelet-Fisz approach to spectrum estimation," LSE Research Online Documents on Economics 25186, London School of Economics and Political Science, LSE Library.
    4. Antonis A. Michis & Guy P. Nason, 2017. "Case study: shipping trend estimation and prediction via multiscale variance stabilisation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2672-2684, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Yves Datey & Genevieve Gauthier & Jean-Guy Simonato, 2003. "The Performance of Analytical Approximations for the Computation of Asian Quanto-Basket Option Prices," Multinational Finance Journal, Multinational Finance Journal, vol. 7(1-2), pages 55-82, March-Jun.
    2. Donald Lien & Christopher Stroud & Keying Ye, 2013. "Comparing VaR Approximation Methods Which Use the First Four Moments as Inputs," Working Papers 0220mss, College of Business, University of Texas at San Antonio.
    3. repec:dau:papers:123456789/13437 is not listed on IDEAS
    4. Gabriel Huerta, 2005. "Multivariate Bayes Wavelet shrinkage and applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(5), pages 529-542.
    5. Lam, William H.K. & Shao, Hu & Sumalee, Agachai, 2008. "Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 890-910, December.
    6. Nilotpal Sanyal & Marco A. R. Ferreira, 2017. "Bayesian Wavelet Analysis Using Nonlocal Priors with an Application to fMRI Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 361-388, November.
    7. Meiri, Ronen & Zahavi, Jacob, 2006. "Using simulated annealing to optimize the feature selection problem in marketing applications," European Journal of Operational Research, Elsevier, vol. 171(3), pages 842-858, June.
    8. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    9. Chen, Huifen & Cheng, Yuyen, 2007. "Non-normality effects on the economic-statistical design of charts with Weibull in-control time," European Journal of Operational Research, Elsevier, vol. 176(2), pages 986-998, January.
    10. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
    11. Andrew Gelman, 2003. "A Bayesian Formulation of Exploratory Data Analysis and Goodness‐of‐fit Testing," International Statistical Review, International Statistical Institute, vol. 71(2), pages 369-382, August.
    12. Sonia Petrone & Stefano Rizzelli & Judith Rousseau & Catia Scricciolo, 2014. "Empirical Bayes methods in classical and Bayesian inference," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 201-215, August.
    13. Arturo Leccadito & Pietro Toscano & Radu S. Tunaru, 2012. "Hermite Binomial Trees: A Novel Technique For Derivatives Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-36.
    14. P. J. Brown & M. Vannucci & T. Fearn, 2002. "Bayes model averaging with selection of regressors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 519-536, August.
    15. N. Naguez & J. L. Prigent, 2017. "Optimal portfolio positioning within generalized Johnson distributions," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1037-1055, July.
    16. Naceur Naguez & Jean-Luc Prigent, 2014. "Dynamic Portfolio Insurance Strategies: Risk Management under Johnson Distributions," Working Papers 2014-329, Department of Research, Ipag Business School.
    17. Richard Stevens, 2003. "Evaluation of methods for interval estimation of model outputs, with application to survival models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(9), pages 967-981.
    18. Wang, Y. & Daniels, M.J., 2013. "Bayesian modeling of the dependence in longitudinal data via partial autocorrelations and marginal variances," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 130-140.
    19. Yumin Yuan & Kai Yang & Lirong Cheng & Yijuan Bai & Yingying Wang & Ying Hou & Aizhong Ding, 2022. "Effect of Normalization Methods on Accuracy of Estimating Low- and High-Molecular Weight PAHs Distribution in the Soils of a Coking Plant," IJERPH, MDPI, vol. 19(23), pages 1-13, November.
    20. Georges Dionne & Genevieve Gauthier & Nadia Ouertani & Nabil Tahani, 2011. "Heterogeneous Basket Options Pricing Using Analytical Approximations," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 47-85, March - J.
    21. Muino, J.M. & Voit, E.O. & Sorribas, A., 2006. "GS-distributions: A new family of distributions for continuous unimodal variables," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2769-2798, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:64:y:2002:i:2:p:189-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.