IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v57y2016i1p133-159.html
   My bibliography  Save this article

The Poisson–Inverse-Gaussian regression model with cure rate: a Bayesian approach and its case influence diagnostics

Author

Listed:
  • Adriano Suzuki
  • Vicente Cancho
  • Francisco Louzada

Abstract

This paper proposes a new survival model, called Poisson Inverse-Gaussian regression cure rate model (PIGcr), which enables different underlying activation mechanisms that lead to the event of interest. The number of competing causes of the event of interest follows a Poisson distribution and the time for the event follows an Inverse-Gaussian distribution. The model takes into account the presence of censored data and covariates. For inferential purposes, a Bayesian approach via Markov Chain Monte Carlo was considered. Discussions on the model selection criteria, as well as a case deletion influence diagnostics are addressed for a joint posterior distribution based on the $$\psi $$ ψ -divergence, which has several divergence measures as particular cases, such as Kullback–Leibler (K–L), $$J$$ J -distance, $$L_1$$ L 1 norm and $$\chi ^2$$ χ 2 -square divergence measures. The procedures are illustrated in artificial and real data. Copyright Springer-Verlag Berlin Heidelberg 2016

Suggested Citation

  • Adriano Suzuki & Vicente Cancho & Francisco Louzada, 2016. "The Poisson–Inverse-Gaussian regression model with cure rate: a Bayesian approach and its case influence diagnostics," Statistical Papers, Springer, vol. 57(1), pages 133-159, March.
  • Handle: RePEc:spr:stpapr:v:57:y:2016:i:1:p:133-159
    DOI: 10.1007/s00362-014-0649-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-014-0649-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-014-0649-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vicente Cancho & Mário Castro & Josemar Rodrigues, 2012. "A Bayesian analysis of the Conway–Maxwell–Poisson cure rate model," Statistical Papers, Springer, vol. 53(1), pages 165-176, February.
    2. Sevil Bacanli & Yaprak Demirhan, 2008. "A group sequential test for the inverse Gaussian mean," Statistical Papers, Springer, vol. 49(2), pages 377-386, April.
    3. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    4. Antonio Sanhueza & Víctor Leiva & N. Balakrishnan, 2008. "A new class of inverse Gaussian type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(1), pages 31-49, June.
    5. Dey, Dipak K. & Birmiwal, Lea R., 1994. "Robust Bayesian analysis using divergence measures," Statistics & Probability Letters, Elsevier, vol. 20(4), pages 287-294, July.
    6. Rodrigues, Josemar & Cancho, Vicente G. & de Castro, Mrio & Louzada-Neto, Francisco, 2009. "On the unification of long-term survival models," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 753-759, March.
    7. Tsodikov A.D. & Ibrahim J.G. & Yakovlev A.Y., 2003. "Estimating Cure Rates From Survival Data: An Alternative to Two-Component Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1063-1078, January.
    8. Samuel Kotz & Víctor Leiva & Antonio Sanhueza, 2010. "Two New Mixture Models Related to the Inverse Gaussian Distribution," Methodology and Computing in Applied Probability, Springer, vol. 12(1), pages 199-212, March.
    9. Jeremy Balka & Anthony Desmond & Paul McNicholas, 2011. "Bayesian and likelihood inference for cure rates based on defective inverse Gaussian regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(1), pages 127-144.
    10. Cooner, Freda & Banerjee, Sudipto & Carlin, Bradley P. & Sinha, Debajyoti, 2007. "Flexible Cure Rate Modeling Under Latent Activation Schemes," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 560-572, June.
    11. Cynthia Tojeiro & Francisco Louzada, 2012. "A general threshold stress hybrid hazard model for lifetime data," Statistical Papers, Springer, vol. 53(4), pages 833-848, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocha, Ricardo & Nadarajah, Saralees & Tomazella, Vera & Louzada, Francisco, 2017. "A new class of defective models based on the Marshall–Olkin family of distributions for cure rate modeling," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 48-63.
    2. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    3. Elizabeth Hashimoto & Gauss Cordeiro & Edwin Ortega, 2013. "The new Neyman type A beta Weibull model with long-term survivors," Computational Statistics, Springer, vol. 28(3), pages 933-954, June.
    4. Mário Castro & Yolanda M. Gómez, 2020. "A Bayesian Cure Rate Model Based on the Power Piecewise Exponential Distribution," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 677-692, June.
    5. Olayidé Boussari & Laurent Bordes & Gaëlle Romain & Marc Colonna & Nadine Bossard & Laurent Remontet & Valérie Jooste, 2021. "Modeling excess hazard with time‐to‐cure as a parameter," Biometrics, The International Biometric Society, vol. 77(4), pages 1289-1302, December.
    6. Beatriz R. Lanjoni & Edwin M. M. Ortega & Gauss M. Cordeiro, 2016. "Extended Burr XII Regression Models: Theory and Applications," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 203-224, March.
    7. Mohamed Elamin Abdallah Mohamed Elamin Omer & Mohd Rizam Abu Bakar & Mohd Bakri Adam & Mohd Shafie Mustafa, 2020. "Cure Models with Exponentiated Weibull Exponential Distribution for the Analysis of Melanoma Patients," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    8. Vicente G. Cancho & Márcia A. C. Macera & Adriano K. Suzuki & Francisco Louzada & Katherine E. C. Zavaleta, 2020. "A new long-term survival model with dispersion induced by discrete frailty," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 221-244, April.
    9. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy, 2012. "Correlated destructive generalized power series cure rate models and associated inference with an application to a cutaneous melanoma data," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1703-1713.
    10. Amanda D’Andrea & Ricardo Rocha & Vera Tomazella & Francisco Louzada, 2018. "Negative Binomial Kumaraswamy-G Cure Rate Regression Model," JRFM, MDPI, vol. 11(1), pages 1-14, January.
    11. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    12. Diego I. Gallardo & Heleno Bolfarine & Atonio Carlos Pedroso-de-Lima, 2017. "A clustering cure rate model with application to a sealant study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 2949-2962, December.
    13. Thiago G. Ramires & Niel Hens & Gauss M. Cordeiro & Edwin M. M. Ortega, 2018. "Estimating nonlinear effects in the presence of cure fraction using a semi-parametric regression model," Computational Statistics, Springer, vol. 33(2), pages 709-730, June.
    14. Bao Yiqi & Cibele Maria Russo & Vicente G. Cancho & Francisco Louzada, 2016. "Influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(6), pages 1027-1060, May.
    15. Diego I. Gallardo & Mário de Castro & Héctor W. Gómez, 2021. "An Alternative Promotion Time Cure Model with Overdispersed Number of Competing Causes: An Application to Melanoma Data," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    16. Barreto-Souza, Wagner, 2015. "Long-term survival models with overdispersed number of competing causes," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 51-63.
    17. Francisco Louzada & M�rio de Castro & Vera Tomazella & Jhon F.B. Gonzales, 2014. "Modeling categorical covariates for lifetime data in the presence of cure fraction by Bayesian partition structures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 622-634, March.
    18. Vicente Cancho & Mário Castro & Josemar Rodrigues, 2012. "A Bayesian analysis of the Conway–Maxwell–Poisson cure rate model," Statistical Papers, Springer, vol. 53(1), pages 165-176, February.
    19. Vicente G. Cancho & Dipak K. Dey & Francisco Louzada, 2016. "Unified multivariate survival model with a surviving fraction: an application to a Brazilian customer churn data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(3), pages 572-584, March.
    20. Hanin, Leonid & Huang, Li-Shan, 2014. "Identifiability of cure models revisited," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 261-274.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:57:y:2016:i:1:p:133-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.