IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i4p721-737.html
   My bibliography  Save this article

Bayesian deconvolution of oil well test data using Gaussian processes

Author

Listed:
  • J. Andrés Christen
  • Bruno Sansó
  • Mario Santana-Cibrian
  • Jorge X. Velasco-Hernández

Abstract

We use Bayesian methods to infer an unobserved function that is convolved with a known kernel. Our method is based on the assumption that the function of interest is a Gaussian process and, assuming a particular correlation structure, the resulting convolution is also a Gaussian process. This fact is used to obtain inferences regarding the unobserved process, effectively providing a deconvolution method. We apply the methodology to the problem of estimating the parameters of an oil reservoir from well-test pressure data. Here, the unknown process describes the structure of the well. Applications to data from Mexican oil wells show very accurate results.

Suggested Citation

  • J. Andrés Christen & Bruno Sansó & Mario Santana-Cibrian & Jorge X. Velasco-Hernández, 2016. "Bayesian deconvolution of oil well test data using Gaussian processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 721-737, March.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:4:p:721-737
    DOI: 10.1080/02664763.2015.1077374
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1077374
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1077374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy D. Johnson, 2003. "Bayesian Deconvolution Analysis of Pulsatile Hormone Concentration Profiles," Biometrics, The International Biometric Society, vol. 59(3), pages 650-660, September.
    2. Michael J. Wichura, 1988. "The Percentage Points of the Normal Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(3), pages 477-484, November.
    3. Mark A. van de Wiel & Kyung In Kim, 2007. "Estimating the False Discovery Rate Using Nonparametric Deconvolution," Biometrics, The International Biometric Society, vol. 63(3), pages 806-815, September.
    4. Iain M. Johnstone & Gérard Kerkyacharian & Dominique Picard & Marc Raimondo, 2004. "Wavelet deconvolution in a periodic setting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 547-573, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bissantz, Nicolai & Holzmann, Hajo, 2007. "Statistical inference for inverse problems," Technical Reports 2007,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Benedek, Gábor & Kóbor, Ádám & Pataki, Attila, 2002. "A kapcsolatszorosság mérése m-dimenziós kopulákkal és értékpapírportfólió-alkalmazások [Measuring dependence with m-dimensional copulas and applications of this]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 105-125.
    3. Nichole E. Carlson & Timothy D. Johnson & Morton B. Brown, 2009. "A Bayesian Approach to Modeling Associations Between Pulsatile Hormones," Biometrics, The International Biometric Society, vol. 65(2), pages 650-659, June.
    4. Jérémie Bigot & Sébastien Van Bellegem, 2009. "Log‐density Deconvolution by Wavelet Thresholding," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 749-763, December.
    5. Chesneau, Christophe, 2007. "Regression with random design: A minimax study," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 40-53, January.
    6. Raimondo, Marc & Stewart, Michael, 2007. "The WaveD Transform in R: Performs Fast Translation-Invariant Wavelet Deconvolution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i02).
    7. Sulewski Piotr & Szymkowiak Magdalena, 2022. "The Weibull lifetime model with randomised failure-free time," Statistics in Transition New Series, Polish Statistical Association, vol. 23(4), pages 59-76, December.
    8. Abbaszadeh, Mohammad & Chesneau, Christophe & Doosti, Hassan, 2012. "Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 932-941.
    9. Birke, Melanie & Bissantz, Nicolai, 2007. "Shape constrained estimators in inverse regression models with convolution-type operator," Technical Reports 2007,35, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Benhaddou, Rida, 2017. "On minimax convergence rates under Lp-risk for the anisotropic functional deconvolution model," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 120-125.
    11. Huang, Alex YiHou, 2010. "An optimization process in Value-at-Risk estimation," Review of Financial Economics, Elsevier, vol. 19(3), pages 109-116, August.
    12. Bissantz, Nicolai & Hohage, T. & Munk, Axel & Ruymgaart, F., 2007. "Convergence rates of general regularization methods for statistical inverse problems and applications," Technical Reports 2007,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    13. Yu-Chieh Yang & Anna Liu & Yuedong Wang, 2006. "Detecting Pulsatile Hormone Secretions Using Nonlinear Mixed Effects Partial Spline Models," Biometrics, The International Biometric Society, vol. 62(1), pages 230-238, March.
    14. Nicolai Bissantz & Gerda Claeskens & Hajo Holzmann & Axel Munk, 2009. "Testing for lack of fit in inverse regression—with applications to biophotonic imaging," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 25-48, January.
    15. Fabienne Comte & Charles-A. Cuenod & Marianna Pensky & Yves Rozenholc, 2017. "Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 69-94, January.
    16. João Claro & Jorge Sousa, 2010. "A multiobjective metaheuristic for a mean-risk static stochastic knapsack problem," Computational Optimization and Applications, Springer, vol. 46(3), pages 427-450, July.
    17. Haas, Markus & Mittnik, Stefan & Mizrach, Bruce, 2006. "Assessing central bank credibility during the ERM crises: Comparing option and spot market-based forecasts," Journal of Financial Stability, Elsevier, vol. 2(1), pages 28-54, April.
    18. van Iterson Maarten & van de Wiel Mark A. & Boer Judith M. & de Menezes Renée X., 2013. "General power and sample size calculations for high-dimensional genomic data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(4), pages 449-467, August.
    19. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2004. "Estimating threshold subset autoregressive moving-average models by genetic algorithms," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 39-61.
    20. William T. Shaw & Thomas Luu & Nick Brickman, 2009. "Quantile Mechanics II: Changes of Variables in Monte Carlo methods and GPU-Optimized Normal Quantiles," Papers 0901.0638, arXiv.org, revised Dec 2011.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:4:p:721-737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.