IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/478.html
   My bibliography  Save this article

A kapcsolatszorosság mérése m-dimenziós kopulákkal és értékpapírportfólió-alkalmazások
[Measuring dependence with m-dimensional copulas and applications of this]

Author

Listed:
  • Benedek, Gábor
  • Kóbor, Ádám
  • Pataki, Attila

Abstract

A dolgozat a pénzügyi piaci faktorok közti függőség mérésének problémájával foglalkozik. A közelmúltban intenzív kutatások folytak e területen, amelynek eredményeként rugalmas nemlineáris modellek és alternatív függőségi mérőszámok váltak elérhetővé. A kopula fogalma kiemelt szerepet tölt be ezen új keletű kutatásokban. Segítségével kiléphetünk a normalitás hipotézisére épülő modellek világából, és a lineáris korreláció mellett lehetőségünk van alternatív kapcsolatszorossági mértékek használatára. Emellett tovább léphetünk az egy- és kétdimenziós elemzéseken is. Ebben a dolgozatban a statikus, időtényezőtől független esettel foglalkozunk, és két alkalmazást mutatunk be két különböző értékpapírpiacra, az amerikai és magyar piacra. A kopulák használatát kockázatkezelési problémákon keresztül illusztráljuk, és elvégezzük a modellek formális tesztelését.

Suggested Citation

  • Benedek, Gábor & Kóbor, Ádám & Pataki, Attila, 2002. "A kapcsolatszorosság mérése m-dimenziós kopulákkal és értékpapírportfólió-alkalmazások [Measuring dependence with m-dimensional copulas and applications of this]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 105-125.
  • Handle: RePEc:ksa:szemle:478
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=478
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael J. Wichura, 1988. "The Percentage Points of the Normal Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(3), pages 477-484, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sulewski Piotr & Szymkowiak Magdalena, 2022. "The Weibull lifetime model with randomised failure-free time," Statistics in Transition New Series, Statistics Poland, vol. 23(4), pages 59-76, December.
    2. Alex YiHou Huang, 2010. "An optimization process in Value‐at‐Risk estimation," Review of Financial Economics, John Wiley & Sons, vol. 19(3), pages 109-116, August.
    3. João Claro & Jorge Sousa, 2010. "A multiobjective metaheuristic for a mean-risk static stochastic knapsack problem," Computational Optimization and Applications, Springer, vol. 46(3), pages 427-450, July.
    4. Haas, Markus & Mittnik, Stefan & Mizrach, Bruce, 2006. "Assessing central bank credibility during the ERM crises: Comparing option and spot market-based forecasts," Journal of Financial Stability, Elsevier, vol. 2(1), pages 28-54, April.
    5. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2004. "Estimating threshold subset autoregressive moving-average models by genetic algorithms," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 39-61.
    6. William T. Shaw & Thomas Luu & Nick Brickman, 2009. "Quantile Mechanics II: Changes of Variables in Monte Carlo methods and GPU-Optimized Normal Quantiles," Papers 0901.0638, arXiv.org, revised Dec 2011.
    7. J. Andrés Christen & Bruno Sansó & Mario Santana-Cibrian & Jorge X. Velasco-Hernández, 2016. "Bayesian deconvolution of oil well test data using Gaussian processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 721-737, March.
    8. De Schrijver, Steven K. & Aghezzaf, El-Houssaine & Vanmaele, Hendrik, 2014. "Double precision rational approximation algorithm for the inverse standard normal second order loss function," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 247-253.
    9. Siu Hung Cheung & Ka Ho Wu & Wai Sum Chan, 1998. "Simultaneous prediction intervals for autoregressive-integrated moving-average models: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 28(3), pages 297-306, September.
    10. Ignacio Mauleón, 2022. "Contributions to Risk Assessment with Edgeworth–Sargan Density Expansions (I): Stability Testing," Mathematics, MDPI, vol. 10(7), pages 1-18, March.

    More about this item

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.