IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v130y2017icp120-125.html
   My bibliography  Save this article

On minimax convergence rates under Lp-risk for the anisotropic functional deconvolution model

Author

Listed:
  • Benhaddou, Rida

Abstract

We look into minimax results for the anisotropic functional deconvolution model under the Lp-risk, 1≤p<∞. We construct lower bounds and show that the wavelet hard-thresholding estimator is asymptotically near-optimal in the Lp-risk.

Suggested Citation

  • Benhaddou, Rida, 2017. "On minimax convergence rates under Lp-risk for the anisotropic functional deconvolution model," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 120-125.
  • Handle: RePEc:eee:stapro:v:130:y:2017:i:c:p:120-125
    DOI: 10.1016/j.spl.2017.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217302419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petsa, Athanasia & Sapatinas, Theofanis, 2009. "Minimax convergence rates under the Lp-risk in the functional deconvolution model," Statistics & Probability Letters, Elsevier, vol. 79(13), pages 1568-1576, July.
    2. Petsa, Athanasia & Sapatinas, Theofanis, 2009. "Erratum to: "Minimax convergence rates under the Lp-risk in the functional deconvolution model" [Statist. Probab. Lett. 79 (2009) 1568-1576]," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1890-1890, September.
    3. Iain M. Johnstone & Gérard Kerkyacharian & Dominique Picard & Marc Raimondo, 2004. "Wavelet deconvolution in a periodic setting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 547-573, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bissantz, Nicolai & Holzmann, Hajo, 2007. "Statistical inference for inverse problems," Technical Reports 2007,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Jérémie Bigot & Sébastien Van Bellegem, 2009. "Log‐density Deconvolution by Wavelet Thresholding," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 749-763, December.
    3. Chesneau, Christophe, 2007. "Regression with random design: A minimax study," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 40-53, January.
    4. Raimondo, Marc & Stewart, Michael, 2007. "The WaveD Transform in R: Performs Fast Translation-Invariant Wavelet Deconvolution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i02).
    5. Abbaszadeh, Mohammad & Chesneau, Christophe & Doosti, Hassan, 2012. "Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 932-941.
    6. Birke, Melanie & Bissantz, Nicolai, 2007. "Shape constrained estimators in inverse regression models with convolution-type operator," Technical Reports 2007,35, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    7. Bissantz, Nicolai & Hohage, T. & Munk, Axel & Ruymgaart, F., 2007. "Convergence rates of general regularization methods for statistical inverse problems and applications," Technical Reports 2007,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Nicolai Bissantz & Gerda Claeskens & Hajo Holzmann & Axel Munk, 2009. "Testing for lack of fit in inverse regression—with applications to biophotonic imaging," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 25-48, January.
    9. Fabienne Comte & Charles-A. Cuenod & Marianna Pensky & Yves Rozenholc, 2017. "Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 69-94, January.
    10. J. Andrés Christen & Bruno Sansó & Mario Santana-Cibrian & Jorge X. Velasco-Hernández, 2016. "Bayesian deconvolution of oil well test data using Gaussian processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 721-737, March.
    11. Nicolai Bissantz & Hajo Holzmann, 2013. "Asymptotics for spectral regularization estimators in statistical inverse problems," Computational Statistics, Springer, vol. 28(2), pages 435-453, April.
    12. Maarten Jansen & Guy P. Nason & B. W. Silverman, 2009. "Multiscale methods for data on graphs and irregular multidimensional situations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 97-125, January.
    13. Christophe Chesneau, 2011. "On adaptive wavelet estimation of a quadratic functional from a deconvolution problem," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 405-429, April.
    14. Benhaddou, Rida, 2016. "Deconvolution model with fractional Gaussian noise: A minimax study," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 201-208.
    15. Petsa, Athanasia & Sapatinas, Theofanis, 2009. "Minimax convergence rates under the Lp-risk in the functional deconvolution model," Statistics & Probability Letters, Elsevier, vol. 79(13), pages 1568-1576, July.
    16. repec:jss:jstsof:21:i02 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:130:y:2017:i:c:p:120-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.