IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i14p2550-2573.html
   My bibliography  Save this article

Alternative mean-squared error estimators for synthetic estimators of domain means

Author

Listed:
  • S. Magnussen
  • G. Frazer
  • M. Penner

Abstract

In forest management surveys, the mean of a variable of interest (Y) in a population composed of N equal area spatial compact elements is increasingly estimated from a model linking Y to an auxiliary vector X known for all elements in the population. It is also desired to have synthetic estimates of the mean of Y in spatially compact domains (forest stands) with no or at most one sample-based observation of Y. We develop three alternative estimators of mean-squared errors (MSE) that reduce the risk of a serious underestimation of the uncertainty in a synthetic estimate of a domain mean in cases where the employed model does not accounts for domain effects nor spatial autocorrelation in unobserved residual errors. Expansions of the estimators including anticipated effects of a spatial autocorrelation in residual errors are also provided. Simulation results indicate that the conventional model-dependent (MD) population-level estimator of variance in a synthetic estimate of a domain mean underestimates uncertainty by a wide margin. Our alternative estimators mitigated, in settings with weak to moderate domain effects and relatively small sample sizes, to a large extent, the problem of underestimating uncertainty. We demonstrate applications with examples from two actual forest inventories.

Suggested Citation

  • S. Magnussen & G. Frazer & M. Penner, 2016. "Alternative mean-squared error estimators for synthetic estimators of domain means," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2550-2573, October.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:14:p:2550-2573
    DOI: 10.1080/02664763.2016.1142942
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1142942
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1142942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Opsomer, Jean D. & Breidt, F. Jay & Moisen, Gretchen G. & Kauermann, Goran, 2007. "Model-Assisted Estimation of Forest Resources With Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 400-409, June.
    2. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    3. Jay M Ver Hoef & Hailemariam Temesgen, 2013. "A Comparison of the Spatial Linear Model to Nearest Neighbor (k-NN) Methods for Forestry Applications," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steen Magnussen & Johannes Breidenbach, 2020. "Retrieval of among-stand variances from one observation per stand," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(4), pages 133-149.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominik Schreyer, 2019. "Football spectator no-show behaviour in the German Bundesliga," Applied Economics, Taylor & Francis Journals, vol. 51(45), pages 4882-4901, September.
    2. S. Arunachalam & Sridhar N. Ramaswami & Pol Herrmann & Doug Walker, 2018. "Innovation pathway to profitability: the role of entrepreneurial orientation and marketing capabilities," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 744-766, July.
    3. Timothy Erickson & Toni M. Whited, 2000. "Measurement Error and the Relationship between Investment and q," Journal of Political Economy, University of Chicago Press, vol. 108(5), pages 1027-1057, October.
    4. Paul W. Miller & Barry R. Chiswick, 2002. "Immigrant earnings: Language skills, linguistic concentrations and the business cycle," Journal of Population Economics, Springer;European Society for Population Economics, vol. 15(1), pages 31-57.
    5. Fors, Gunnar & Zejan, Mario, 1996. "Overseas R&D by Multinationals in foreign Centers of Excellence," SSE/EFI Working Paper Series in Economics and Finance 111, Stockholm School of Economics.
    6. Rodrigo M. S. Moita & Claudio Paiva, 2013. "Political Price Cycles in Regulated Industries: Theory and Evidence," American Economic Journal: Economic Policy, American Economic Association, vol. 5(1), pages 94-121, February.
    7. repec:spo:wpmain:info:hdl:2441/7172 is not listed on IDEAS
    8. Butler, Marty & Leone, Andrew J. & Willenborg, Michael, 2004. "An empirical analysis of auditor reporting and its association with abnormal accruals," Journal of Accounting and Economics, Elsevier, vol. 37(2), pages 139-165, June.
    9. Baiyegunhi, L.J.S. & Oppong, B.B., 2016. "Commercialisation of mopane worm (Imbrasia belina) in rural households in Limpopo Province, South Africa," Forest Policy and Economics, Elsevier, vol. 62(C), pages 141-148.
    10. MacKinnon, J G, 1989. "Heteroskedasticity-Robust Tests for Structural Change," Empirical Economics, Springer, vol. 14(2), pages 77-92.
    11. Fenech, Jean-Pierre & Skully, Michael & Xuguang, Han, 2014. "Franking credits and market reactions: Evidence from the Australian convertible security market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 32(C), pages 1-19.
    12. François Desmoulins-Lebeault & Jean-François Gajewski & Luc Meunier, 2018. "Personality and Risk Aversion," Economics Bulletin, AccessEcon, vol. 38(1), pages 472-489.
    13. Benjamin M. Blau & Ryan J. Whitby, 2014. "Speculative Trading In Reits," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 37(1), pages 55-74, February.
    14. Bliss, Mark A. & Gul, Ferdinand A., 2012. "Political connection and leverage: Some Malaysian evidence," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2344-2350.
    15. Gu, Chen & Kurov, Alexander & Wolfe, Marketa Halova, 2018. "Relief Rallies after FOMC Announcements as a Resolution of Uncertainty," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 1-18.
    16. Bierens, H.J. & Broersma, L., 1991. "The relation between unemployment and interest rate : some international evidence," Serie Research Memoranda 0112, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    17. Son K. Lam & Thomas E. DeCarlo & Ashish Sharma, 2019. "Salesperson ambidexterity in customer engagement: do customer base characteristics matter?," Journal of the Academy of Marketing Science, Springer, vol. 47(4), pages 659-680, July.
    18. Gruener Hans Peter & Hayo Bernd & Hefeker Carsten, 2009. "Unions, Wage Setting and Monetary Policy Uncertainty," The B.E. Journal of Macroeconomics, De Gruyter, vol. 9(1), pages 1-25, October.
    19. Sian Owen & Jo-Ann Suchard, 2013. "The impact of venture capital/private equity investment on the performance of IPOs in Australia," Chapters, in: Mario Levis & Silvio Vismara (ed.), Handbook of Research on IPOs, chapter 19, pages 400-420, Edward Elgar Publishing.
    20. Jongmoo Jay Choi & Hoje Jo & Jimi Kim & Moo Sung Kim, 2018. "Business Groups and Corporate Social Responsibility," Journal of Business Ethics, Springer, vol. 153(4), pages 931-954, December.
    21. Michael Fritsch & Viktor Slavtchev, 2007. "What determines the efficiency of regional innovation systems?," Jena Economics Research Papers 2007-006, Friedrich-Schiller-University Jena.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:14:p:2550-2573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.