IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i6p1581-1591.html
   My bibliography  Save this article

Parameter estimations for generalized exponential distribution under progressive type-I interval censoring

Author

Listed:
  • Chen, D.G.
  • Lio, Y.L.

Abstract

The estimates, via maximum likelihood, moment method and probability plot, of the parameters in the generalized exponential distribution under progressive type-I interval censoring are studied. A simulation is conducted to compare these estimates in terms of mean squared errors and biases. Finally, these estimate methods are applied to a real data set based on patients with plasma cell myeloma in order to demonstrate the applicabilities.

Suggested Citation

  • Chen, D.G. & Lio, Y.L., 2010. "Parameter estimations for generalized exponential distribution under progressive type-I interval censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1581-1591, June.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:6:p:1581-1591
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00008-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrasco, Jalmar M.F. & Ortega, Edwin M.M. & Cordeiro, Gauss M., 2008. "A generalized modified Weibull distribution for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 450-462, December.
    2. Wang, Zhihui & Desmond, A.F. & Lu, Xuewen, 2006. "Modified censored moment estimation for the two-parameter Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1033-1051, February.
    3. Kundu, Debasis & Raqab, Mohammad Z., 2005. "Generalized Rayleigh distribution: different methods of estimations," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 187-200, April.
    4. Gupta, Rameshwar D. & Kundu, Debasis, 2003. "Discriminating between Weibull and generalized exponential distributions," Computational Statistics & Data Analysis, Elsevier, vol. 43(2), pages 179-196, June.
    5. C. D. Kemp & Adrienne W. Kemp, 1987. "Rapid Generation of Frequency Tables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 277-282, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Jau Lin & Y. L. Lio, 2012. "Bayesian inference under progressive type-I interval censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1811-1824, April.
    2. Soumya Roy & Biswabrata Pradhan, 2023. "Inference for log‐location‐scale family of distributions under competing risks with progressive type‐I interval censored data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 208-232, May.
    3. Saralees Nadarajah, 2011. "The exponentiated exponential distribution: a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 219-251, September.
    4. Sonal Budhiraja & Biswabrata Pradhan, 2020. "Point and interval estimation under progressive type-I interval censoring with random removal," Statistical Papers, Springer, vol. 61(1), pages 445-477, February.
    5. Sukhdev Singh & Yogesh Mani Tripathi, 2018. "Estimating the parameters of an inverse Weibull distribution under progressive type-I interval censoring," Statistical Papers, Springer, vol. 59(1), pages 21-56, March.
    6. Tian, Yuzhu & Zhu, Qianqian & Tian, Maozai, 2015. "Estimation for mixed exponential distributions under type-II progressively hybrid censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 85-96.
    7. Wu, Shuo-Jye & Huang, Syuan-Rong, 2012. "Progressively first-failure censored reliability sampling plans with cost constraint," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2018-2030.
    8. Wu, Shuo-Jye & Hsu, Chu-Chun & Huang, Syuan-Rong, 2020. "Optimal designs and reliability sampling plans for one-shot devices with cost considerations," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    9. David Han & Debasis Kundu, 2013. "Inference for a step-stress model with competing risks from the GE distribution under Type-I censoring," Working Papers 0181mss, College of Business, University of Texas at San Antonio.
    10. Xun Xiao & Amitava Mukherjee & Min Xie, 2016. "Estimation procedures for grouped data – a comparative study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2110-2130, August.
    11. Budhiraja, Sonal & Pradhan, Biswabrata & Sengupta, Debasis, 2017. "Maximum likelihood estimators under progressive Type-I interval censoring," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 202-209.
    12. Refah Alotaibi & Hoda Rezk & Sanku Dey & Hassan Okasha, 2021. "Bayesian estimation for Dagum distribution based on progressive type I interval censoring," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    13. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.
    14. Saieed Ateya, 2014. "Maximum likelihood estimation under a finite mixture of generalized exponential distributions based on censored data," Statistical Papers, Springer, vol. 55(2), pages 311-325, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    2. Hassan S. Bakouch & Abdus Saboor & Muhammad Nauman Khan, 2021. "Modified Beta Linear Exponential Distribution with Hydrologic Applications," Annals of Data Science, Springer, vol. 8(1), pages 131-157, March.
    3. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    5. David Han & Debasis Kundu, 2013. "Inference for a step-stress model with competing risks from the GE distribution under Type-I censoring," Working Papers 0181mss, College of Business, University of Texas at San Antonio.
    6. Edwin Ortega & Gauss Cordeiro & Michael Kattan, 2013. "The log-beta Weibull regression model with application to predict recurrence of prostate cancer," Statistical Papers, Springer, vol. 54(1), pages 113-132, February.
    7. Yu-Jau Lin & Y. L. Lio, 2012. "Bayesian inference under progressive type-I interval censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1811-1824, April.
    8. Singla, Neetu & Jain, Kanchan & Kumar Sharma, Suresh, 2012. "The Beta Generalized Weibull distribution: Properties and applications," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 5-15.
    9. Jese Maria Sarabia & Enrique Castillo, 2005. "About a class of max-stable families with applications to income distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 505-527.
    10. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    11. Hadi Saboori & Ghobad Barmalzan & Seyyed Masih Ayat, 2020. "Generalized Modified Inverse Weibull Distribution: Its Properties and Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 247-269, November.
    12. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    13. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    14. Zoran Vidović, 2019. "Bayesian Prediction of Order Statistics Based on k -Record Values from a Generalized Exponential Distribution," Stats, MDPI, vol. 2(4), pages 1-10, November.
    15. Mohamed Elamin Abdallah Mohamed Elamin Omer & Mohd Rizam Abu Bakar & Mohd Bakri Adam & Mohd Shafie Mustafa, 2020. "Cure Models with Exponentiated Weibull Exponential Distribution for the Analysis of Melanoma Patients," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    16. Lemonte, Artur J. & Cribari-Neto, Francisco & Vasconcellos, Klaus L.P., 2007. "Improved statistical inference for the two-parameter Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4656-4681, May.
    17. Barriga, Gladys D.C. & Louzada-Neto, Franscisco & Cancho, Vicente G., 2011. "The complementary exponential power lifetime model," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1250-1259, March.
    18. Mehrzad Ghorbani & Seyed Fazel Bagheri & Mojtaba Alizadeh, 2017. "A New Family of Distributions: The Additive Modified Weibull Odd Log-logistic-G Poisson Family, Properties and Applications," Annals of Data Science, Springer, vol. 4(2), pages 249-287, June.
    19. Mekalathur B Hemanth Kumar & Saravanan Balasubramaniyan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Wind Energy Potential Assessment by Weibull Parameter Estimation Using Multiverse Optimization Method: A Case Study of Tirumala Region in India," Energies, MDPI, vol. 12(11), pages 1-21, June.
    20. Chansoo Kim & Seongho Song, 2010. "Bayesian estimation of the parameters of the generalized exponential distribution from doubly censored samples," Statistical Papers, Springer, vol. 51(3), pages 583-597, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:6:p:1581-1591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.