IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i6p1174-1188.html
   My bibliography  Save this article

Cloud shade by dynamic logistic modeling

Author

Listed:
  • Marek Brabec
  • Viorel Badescu
  • Marius Paulescu

Abstract

During the daytime, the sun is shining or not at ground level depending on clouds motion. Two binary variables may be used to quantify this process: the sunshine number (SSN) and the sunshine stability number (SSSN). The sequential features of SSN are treated in this paper by using Markovian Logistic Regression models, which avoid usual weaknesses of autoregressive integrated moving average modeling. The theory is illustrated with results obtained by using measurements performed in 2010 at Timisoara (southern Europe). Simple modeling taking into account internal dynamics with one lag history brings substantial reduction of misclassification compared with the persistence approach (to less than 57%). When longer history is considered, all the lags up to at least 8 are important. The seasonal changes are rather concentrated to low lags. Better performance is associated with a more stable radiative regime. More involved models add external influences (such as sun elevation angle or astronomic declination as well as taking into account morning and afternoon effects separately). Models including sun elevation effects are significantly better than those ignoring them. Clearly, during the winter months, the effect of declination is much more pronounced compared with the rest of the year. SSSN is important in long-term considerations and it also plays a role in retrospective assessment of the SSN. However, it is not easy to use SSSN for predicting future SSN. Using more complicated past beam clearness models does not necessarily provide better results than more simple models with SSN past.

Suggested Citation

  • Marek Brabec & Viorel Badescu & Marius Paulescu, 2014. "Cloud shade by dynamic logistic modeling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1174-1188, June.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:6:p:1174-1188
    DOI: 10.1080/02664763.2013.862221
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2013.862221
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2013.862221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    2. Badescu, Viorel, 1999. "Correlations to estimate monthly mean daily solar global irradiation: application to Romania," Energy, Elsevier, vol. 24(10), pages 883-893.
    3. Paulescu, Marius & Badescu, Viorel & Brabec, Marek, 2013. "Tools for PV (photovoltaic) plant operators: Nowcasting of passing clouds," Energy, Elsevier, vol. 54(C), pages 104-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavel Trunin & Marina Kamenskikh & Margarita Muftiahetdinova, 2009. "Islamic Banking System: Present State and Prospects for Development," Research Paper Series, Gaidar Institute for Economic Policy, issue 122P.
    2. García, Jesús M. & Padilla, Ricardo Vasquez & Sanjuan, Marco E., 2016. "A biomimetic approach for modeling cloud shading with dynamic behavior," Renewable Energy, Elsevier, vol. 96(PA), pages 157-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    2. Benjamin Hofner & Andreas Mayr & Nikolay Robinzonov & Matthias Schmid, 2014. "Model-based boosting in R: a hands-on tutorial using the R package mboost," Computational Statistics, Springer, vol. 29(1), pages 3-35, February.
    3. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    4. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    5. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    6. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    7. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    8. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    9. Klaus Friesenbichler, 2013. "Firm Growth in Conflict Countries: Some Evidence from South Asia," Review of Economics & Finance, Better Advances Press, Canada, vol. 3, pages 33-44, May.
    10. Chesher, Andrew, 2017. "Understanding the effect of measurement error on quantile regressions," Journal of Econometrics, Elsevier, vol. 200(2), pages 223-237.
    11. Park, Beum-Jo & Kim, Myung-Joong, 2017. "A Dynamic Measure of Intentional Herd Behavior in Financial Markets," MPRA Paper 82025, University Library of Munich, Germany.
    12. de Chaisemartin, Clement & D'Haultfoeuille, Xavier, "undated". "Supplement to Fuzzy Differences-in-Differences," Economic Research Papers 270217, University of Warwick - Department of Economics.
    13. Andrés Barge-Gil & Alberto López, 2015. "R versus D: estimating the differentiated effect of research and development on innovation results," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(1), pages 93-129.
    14. Kleopatra Nikolaou, 2007. "The behaviour of the real exchange rate: Evidence from regression quantiles," Money Macro and Finance (MMF) Research Group Conference 2006 46, Money Macro and Finance Research Group.
    15. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    16. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    17. Jean-Marc Fournier & Isabell Koske, 2012. "The determinants of earnings inequality: evidence from quantile regressions," OECD Journal: Economic Studies, OECD Publishing, vol. 2012(1), pages 7-36.
    18. Michael D. Bordo & Pierre L. Siklos, 2017. "Central Bank Credibility before and after the Crisis," Open Economies Review, Springer, vol. 28(1), pages 19-45, February.
    19. Feng, Zhenghui & Wang, Tao & Zhu, Lixing, 2014. "Transformation-based estimation," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 186-205.
    20. Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:6:p:1174-1188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.