IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i5p977-988.html
   My bibliography  Save this article

Steady-state Gibbs sampler estimation for lung cancer data

Author

Listed:
  • Martin X. Dunbar
  • Hani M. Samawi
  • Robert Vogel
  • Lili Yu

Abstract

This paper is based on the application of a Bayesian model to a clinical trial study to determine a more effective treatment to lower mortality rates and consequently to increase survival times among patients with lung cancer. In this study, Qian et al. [13] strived to determine if a Weibull survival model can be used to decide whether to stop a clinical trial. The traditional Gibbs sampler was used to estimate the model parameters. This paper proposes to use the independent steady-state Gibbs sampling (ISSGS) approach, introduced by Dunbar et al. [3], to improve the original Gibbs sampler in multidimensional problems. It is demonstrated that ISSGS provides accuracy with unbiased estimation and improves the performance and convergence of the Gibbs sampler in this application.

Suggested Citation

  • Martin X. Dunbar & Hani M. Samawi & Robert Vogel & Lili Yu, 2014. "Steady-state Gibbs sampler estimation for lung cancer data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 977-988, May.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:5:p:977-988
    DOI: 10.1080/02664763.2013.858671
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2013.858671
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2013.858671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    2. Rodríguez Bernal, María Teresa, 2003. "Using weibull mixture distributions to model heterogeneous survival data," DES - Working Papers. Statistics and Econometrics. WS ws033208, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Rafa M. Kasim & Stephen W. Raudenbush, 1998. "Application of Gibbs Sampling to Nested Variance Components Models With Heterogeneous Within-Group Variance," Journal of Educational and Behavioral Statistics, , vol. 23(2), pages 93-116, June.
    4. Marco Marozzi, 2013. "Adaptive choice of scale tests in flexible two-stage designs with applications in experimental ecology and clinical trials," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(4), pages 747-762.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goldman Elena & Tsurumi Hiroki, 2005. "Bayesian Analysis of a Doubly Truncated ARMA-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-38, June.
    2. Myroslav Pidkuyko, 2014. "Dynamics of Consumption and Dividends over the Business Cycle," CERGE-EI Working Papers wp522, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    3. Ippei Fujiwara & Koji Takahashi, 2012. "Asian Financial Linkage: Macro‐Finance Dissonance," Pacific Economic Review, Wiley Blackwell, vol. 17(1), pages 136-159, February.
    4. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
    5. Barnett, Glen & Kohn, Robert & Sheather, Simon, 1996. "Bayesian estimation of an autoregressive model using Markov chain Monte Carlo," Journal of Econometrics, Elsevier, vol. 74(2), pages 237-254, October.
    6. Tripathi Praveen Kumar & Sen Rijji & Upadhyay S. K., 2021. "A Bayes algorithm for model compatibility and comparison of ARMA(p,q) models," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 95-123, June.
    7. Zhang, Bo & Chan, Joshua C.C. & Cross, Jamie L., 2020. "Stochastic volatility models with ARMA innovations: An application to G7 inflation forecasts," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1318-1328.
    8. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    9. Yuri A. Dubnov & Alexandr V. Boulytchev, 2023. "Accelerated Maximum Entropy Method for Time Series Models Estimation," Mathematics, MDPI, vol. 11(18), pages 1-15, September.
    10. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    11. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    12. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    13. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    14. Gordon, Stephen & Bélanger, Gilles, 1996. "Échantillonnage de Gibbs et autres applications économétriques des chaînes markoviennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 72(1), pages 27-49, mars.
    15. Drew D. Creal & Jing Cynthia Wu, 2017. "Monetary Policy Uncertainty And Economic Fluctuations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(4), pages 1317-1354, November.
    16. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    17. Kleibergen, F.R. & Hoek, H., 1995. "Bayesian analysis of ARMA models using noninformative priors," Other publications TiSEM 81684a10-935f-49c4-b5ab-0, Tilburg University, School of Economics and Management.
    18. Tsionas, Efthymios G., 2013. "Bayesian inference in regression with Pearson disturbances," Economics Letters, Elsevier, vol. 118(1), pages 177-181.
    19. Tino Berger & Lorenzo Pozzi, 2016. "Is there really a Global Business Cycle? A Dynamic Factor Model with Stochastic Factor Selection," Tinbergen Institute Discussion Papers 16-088/VI, Tinbergen Institute.
    20. Jim Malley & Ulrich Woitek, 2011. "Productivity Shocks and Aggregate Fluctuations in an Estimated Endogenous Growth Model with Human Capital," CESifo Working Paper Series 3567, CESifo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:5:p:977-988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.