IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws033208.html
   My bibliography  Save this paper

Using weibull mixture distributions to model heterogeneous survival data

Author

Listed:
  • Rodríguez Bernal, María Teresa

Abstract

In this article we use Bayesian methods to fit a Weibull mixture model with an unknown number of components to possibly right censored survival data. This is done using the recently developed, birth-death MCMC algorithm. We also show how to estimate the survivor function and the expected hazard rate from the MCMA output.

Suggested Citation

  • Rodríguez Bernal, María Teresa, 2003. "Using weibull mixture distributions to model heterogeneous survival data," DES - Working Papers. Statistics and Econometrics. WS ws033208, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws033208
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/cb2953d6-bb9d-409a-9308-b3cf9a960f6f/content
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin X. Dunbar & Hani M. Samawi & Robert Vogel & Lili Yu, 2014. "Steady-state Gibbs sampler estimation for lung cancer data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 977-988, May.
    2. Karl Mosler & Christoph Scheicher, 2008. "Homogeneity testing in a Weibull mixture model," Statistical Papers, Springer, vol. 49(2), pages 315-332, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws033208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.