IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p4000-d1244297.html
   My bibliography  Save this article

Accelerated Maximum Entropy Method for Time Series Models Estimation

Author

Listed:
  • Yuri A. Dubnov

    (Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, 44/2 Vavilova, 119333 Moscow, Russia
    Higher Schools of Economics, National Research University, 20 Myasnitskaya, 109028 Moscow, Russia)

  • Alexandr V. Boulytchev

    (Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, 44/2 Vavilova, 119333 Moscow, Russia
    Higher Schools of Economics, National Research University, 20 Myasnitskaya, 109028 Moscow, Russia)

Abstract

The work is devoted to the development of a maximum entropy estimation method with soft randomization for restoring the parameters of probabilistic mathematical models from the available observations. Soft randomization refers to the technique of adding regularization to the functional of information entropy in order to simplify the optimization problem and speed up the learning process compared to the classical maximum entropy method. Entropic estimation makes it possible to restore probability distribution functions for model parameters without introducing additional assumptions about the likelihood function; thus, this estimation method can be used in problems with an unspecified type of measurement noise, such as analysis and forecasting of time series.

Suggested Citation

  • Yuri A. Dubnov & Alexandr V. Boulytchev, 2023. "Accelerated Maximum Entropy Method for Time Series Models Estimation," Mathematics, MDPI, vol. 11(18), pages 1-15, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:4000-:d:1244297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/4000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/4000/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    2. Liu, Yan, 2017. "Robust parameter estimation for stationary processes by an exotic disparity from prediction problem," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 120-130.
    3. Darbellay, Georges A & Wuertz, Diethelm, 2000. "The entropy as a tool for analysing statistical dependences in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 429-439.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
    6. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    7. Yongmiao Hong & Halbert White, 2005. "Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial Dependence," Econometrica, Econometric Society, vol. 73(3), pages 837-901, May.
    8. Yan Liu & Yujie Xue & Masanobu Taniguchi, 2020. "Robust Linear Interpolation and Extrapolation of Stationary Time Series in Lp," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 229-248, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bo & Chan, Joshua C.C. & Cross, Jamie L., 2020. "Stochastic volatility models with ARMA innovations: An application to G7 inflation forecasts," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1318-1328.
    2. repec:wyi:journl:002087 is not listed on IDEAS
    3. Goldman Elena & Tsurumi Hiroki, 2005. "Bayesian Analysis of a Doubly Truncated ARMA-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-38, June.
    4. Kun Chen & Rui Huang, 2021. "Robust empirical likelihood for time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(1), pages 4-18, January.
    5. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    6. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    7. Nankervis, John C. & Savin, N. E., 2010. "Testing for Serial Correlation: Generalized Andrews–Ploberger Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 246-255.
    8. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    9. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    10. Muhammad Sheraz & Imran Nasir, 2021. "Information-Theoretic Measures and Modeling Stock Market Volatility: A Comparative Approach," Risks, MDPI, vol. 9(5), pages 1-20, May.
    11. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    12. Ebenezer, Appiah Collins & Jatoe, John Baptist D. & Mensa-Bonsu, Akwasi, 2018. "Food Price Sensitivity To Changes In Petroleum Price And Exchange Rate In Ghana: A Cointegration Analysis," 2018 Conference (2nd), August 8-11, Kumasi, Ghana 277791, Ghana Association of Agricultural Economists.
    13. Kushal Banik Chowdhury & Nityananda Sarkar, 2015. "The Effect of Inflation on Inflation Uncertainty in the G7 Countries: A Double Threshold GARCH Model," International Econometric Review (IER), Econometric Research Association, vol. 7(1), pages 34-50, April.
    14. Ballarin, Giovanni & Dellaportas, Petros & Grigoryeva, Lyudmila & Hirt, Marcel & van Huellen, Sophie & Ortega, Juan-Pablo, 2024. "Reservoir computing for macroeconomic forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1206-1237.
    15. Diks Cees & Panchenko Valentyn, 2008. "Rank-based Entropy Tests for Serial Independence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(1), pages 1-21, March.
    16. Cees Diks & Valentyn Panchenko, 2005. "Nonparametric Tests for Serial Independence Based on Quadratic Forms," Tinbergen Institute Discussion Papers 05-076/1, Tinbergen Institute.
    17. Siddiqi, Hammad, 2006. "Belief merging and revision under social influence: An explanation for the volatility clustering puzzle," MPRA Paper 657, University Library of Munich, Germany.
    18. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    19. Hammad A. Siddiqi, 2006. "Is it Social Influence on Beliefs Under Ambiguity? A Possible Explanation for Volatility Clustering," Microeconomics Working Papers 22279, East Asian Bureau of Economic Research.
    20. Yongmiao Hong, 2013. "Serial Correlation and Serial Dependence," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    21. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:4000-:d:1244297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.