IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i12p2727-2742.html
   My bibliography  Save this article

Bayesian age-stratified joinpoint regression model: an application to lung and brain cancer mortality

Author

Listed:
  • Ram C. Kafle
  • Netra Khanal
  • Chris P. Tsokos

Abstract

Joinpoint regression model identifies significant changes in the trends of the incidence, mortality, and survival of a specific disease in a given population. The purpose of the present study is to develop an age-stratified Bayesian joinpoint regression model to describe mortality trend assuming that the observed counts are probabilistically characterized by the Poisson distribution. The proposed model is based on Bayesian model selection criteria with the smallest number of joinpoints that are sufficient to explain the Annual Percentage Change. The prior probability distributions are chosen in such a way that they are automatically derived from the model index contained in the model space. The proposed model and methodology estimates the age-adjusted mortality rates in different epidemiological studies to compare the trends by accounting the confounding effects of age. In developing the subject methods, we use the cancer mortality counts of adult lung and bronchus cancer, and brain and other Central Nervous System cancer patients obtained from the Surveillance Epidemiology and End Results data base of the National Cancer Institute.

Suggested Citation

  • Ram C. Kafle & Netra Khanal & Chris P. Tsokos, 2014. "Bayesian age-stratified joinpoint regression model: an application to lung and brain cancer mortality," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2727-2742, December.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:12:p:2727-2742
    DOI: 10.1080/02664763.2014.927840
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.927840
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.927840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. J. Bayarri & G. García‐Donato, 2008. "Generalization of Jeffreys divergence‐based priors for Bayesian hypothesis testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 981-1003, November.
    2. Ghosh, Pulak & Basu, Sanjib & Tiwari, Ram C., 2009. "Bayesian Analysis of Cancer Rates From SEER Program Using Parametric and Semiparametric Joinpoint Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 439-452.
    3. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    4. Frank Denton & Christine Feaver & Byron Spencer, 2005. "Time series analysis and stochastic forecasting: An econometric study of mortality and life expectancy," Journal of Population Economics, Springer;European Society for Population Economics, vol. 18(2), pages 203-227, June.
    5. P. J. Brown & M. Vannucci & T. Fearn, 1998. "Multivariate Bayesian variable selection and prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 627-641.
    6. P. J. Brown & M. Vannucci & T. Fearn, 2002. "Bayes model averaging with selection of regressors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 519-536, August.
    7. Czado, Claudia & Delwarde, Antoine & Denuit, Michel, 2005. "Bayesian Poisson log-bilinear mortality projections," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 260-284, June.
    8. Shripad Tuljapurkar & Nan Li & Carl Boe, 2000. "A universal pattern of mortality decline in the G7 countries," Nature, Nature, vol. 405(6788), pages 789-792, June.
    9. Kevin M. White, 2002. "Longevity Advances in High‐Income Countries, 1955–96," Population and Development Review, The Population Council, Inc., vol. 28(1), pages 59-76, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
    2. Wong, Jackie S.T. & Forster, Jonathan J. & Smith, Peter W.F., 2018. "Bayesian mortality forecasting with overdispersion," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 206-221.
    3. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    4. Pieter van Baal & Frederik Peters & Johan Mackenbach & Wilma Nusselder, 2016. "Forecasting differences in life expectancy by education," Population Studies, Taylor & Francis Journals, vol. 70(2), pages 201-216, May.
    5. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    6. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    7. repec:hum:wpaper:sfb649dp2009-015 is not listed on IDEAS
    8. Dimitris Korobilis, 2008. "Forecasting in vector autoregressions with many predictors," Advances in Econometrics, in: Bayesian Econometrics, pages 403-431, Emerald Group Publishing Limited.
    9. Jackie Li, 2014. "An application of MCMC simulation in mortality projection for populations with limited data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(1), pages 1-48.
    10. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    11. Ayuso, Mercedes & Bravo, Jorge M. & Holzmann, Robert, 2021. "Getting life expectancy estimates right for pension policy: period versus cohort approach," Journal of Pension Economics and Finance, Cambridge University Press, vol. 20(2), pages 212-231, April.
    12. Katja Hanewald & Thomas Post & Helmut Gründl, 2011. "Stochastic Mortality, Macroeconomic Risks and Life Insurer Solvency," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(3), pages 458-475, July.
    13. F. Peters & J. P. Mackenbach & W. J. Nusselder, 2016. "Does the Impact of the Tobacco Epidemic Explain Structural Changes in the Decline of Mortality?," European Journal of Population, Springer;European Association for Population Studies, vol. 32(5), pages 687-702, December.
    14. Michel Denuit, 2009. "Life Anuities with Stochastic Survival Probabilities: A Review," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 463-489, September.
    15. Anastasia Dimiski, 2020. "Factors that affect Students’ performance in Science: An application using Gini-BMA methodology in PISA 2015 dataset," Working Papers 2004, University of Guelph, Department of Economics and Finance.
    16. Arkadiusz Wiśniowski & Peter Smith & Jakub Bijak & James Raymer & Jonathan Forster, 2015. "Bayesian Population Forecasting: Extending the Lee-Carter Method," Demography, Springer;Population Association of America (PAA), vol. 52(3), pages 1035-1059, June.
    17. Ekheden, Erland & Hössjer, Ola, 2015. "Multivariate time series modeling, estimation and prediction of mortalities," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 156-171.
    18. Ouysse, Rachida & Kohn, Robert, 2010. "Bayesian variable selection and model averaging in the arbitrage pricing theory model," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3249-3268, December.
    19. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
    20. Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
    21. Hanewald, Katja, 2009. "Lee-Carter and the macroeconomy," SFB 649 Discussion Papers 2009-008, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:12:p:2727-2742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.