IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v64y2002i3p519-536.html
   My bibliography  Save this article

Bayes model averaging with selection of regressors

Author

Listed:
  • P. J. Brown
  • M. Vannucci
  • T. Fearn

Abstract

Summary. When a number of distinct models contend for use in prediction, the choice of a single model can offer rather unstable predictions. In regression, stochastic search variable selection with Bayesian model averaging offers a cure for this robustness issue but at the expense of requiring very many predictors. Here we look at Bayes model averaging incorporating variable selection for prediction. This offers similar mean‐square errors of prediction but with a vastly reduced predictor space. This can greatly aid the interpretation of the model. It also reduces the cost if measured variables have costs. The development here uses decision theory in the context of the multivariate general linear model. In passing, this reduced predictor space Bayes model averaging is contrasted with single‐model approximations. A fast algorithm for updating regressions in the Markov chain Monte Carlo searches for posterior inference is developed, allowing many more variables than observations to be contemplated. We discuss the merits of absolute rather than proportionate shrinkage in regression, especially when there are more variables than observations. The methodology is illustrated on a set of spectroscopic data used for measuring the amounts of different sugars in an aqueous solution.

Suggested Citation

  • P. J. Brown & M. Vannucci & T. Fearn, 2002. "Bayes model averaging with selection of regressors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 519-536, August.
  • Handle: RePEc:bla:jorssb:v:64:y:2002:i:3:p:519-536
    DOI: 10.1111/1467-9868.00348
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00348
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Merlise Clyde & Edward I. George, 2000. "Flexible empirical Bayes estimation for wavelets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 681-698.
    2. Rolf Sundberg, 1999. "Multivariate Calibration — Direct and Indirect Regression Methodology," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(2), pages 161-207, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dau:papers:123456789/13437 is not listed on IDEAS
    2. Paolo Vidoni, 2003. "Prediction and calibration in generalized linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(1), pages 169-185, March.
    3. Gabriel Huerta, 2005. "Multivariate Bayes Wavelet shrinkage and applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(5), pages 529-542.
    4. Nilotpal Sanyal & Marco A. R. Ferreira, 2017. "Bayesian Wavelet Analysis Using Nonlocal Priors with an Application to fMRI Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 361-388, November.
    5. Meiri, Ronen & Zahavi, Jacob, 2006. "Using simulated annealing to optimize the feature selection problem in marketing applications," European Journal of Operational Research, Elsevier, vol. 171(3), pages 842-858, June.
    6. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
    7. Andrew Gelman, 2003. "A Bayesian Formulation of Exploratory Data Analysis and Goodness‐of‐fit Testing," International Statistical Review, International Statistical Institute, vol. 71(2), pages 369-382, August.
    8. Sonia Petrone & Stefano Rizzelli & Judith Rousseau & Catia Scricciolo, 2014. "Empirical Bayes methods in classical and Bayesian inference," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 201-215, August.
    9. Stuart Barber & Guy P. Nason & Bernard W. Silverman, 2002. "Posterior probability intervals for wavelet thresholding," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 189-205, May.
    10. Wang, Y. & Daniels, M.J., 2013. "Bayesian modeling of the dependence in longitudinal data via partial autocorrelations and marginal variances," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 130-140.
    11. Abramovich, Felix & Besbeas, Panagiotis & Sapatinas, Theofanis, 2002. "Empirical Bayes approach to block wavelet function estimation," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 435-451, June.
    12. Stuart Barber & Guy P. Nason, 2004. "Real nonparametric regression using complex wavelets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 927-939, November.
    13. Joyee Ghosh & Amy H. Herring & Anna Maria Siega-Riz, 2011. "Bayesian Variable Selection for Latent Class Models," Biometrics, The International Biometric Society, vol. 67(3), pages 917-925, September.
    14. Lynn R. LaMotte & Jeffrey D. Wells, 2016. "Inverse prediction for multivariate mixed models with standard software," Statistical Papers, Springer, vol. 57(4), pages 929-938, December.
    15. Hans, Christopher M. & Peruggia, Mario & Wang, Junyan, 2023. "Empirical Bayes Model Averaging with Influential Observations: Tuning Zellner’s g Prior for Predictive Robustness," Econometrics and Statistics, Elsevier, vol. 27(C), pages 102-119.
    16. Reményi, Norbert & Vidakovic, Brani, 2013. "Λ-neighborhood wavelet shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 404-416.
    17. Peter Müeller & Fernando A. Quintana & Garritt Page, 2018. "Nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 175-206, June.
    18. Lin, Chun-Sui & Huang, Mong-Na Lo, 2010. "Optimal designs for estimating the control values in multi-univariate regression models," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1055-1066, May.
    19. Francesca DE BATTISTI & Silvia SALINI & Alberto CRESCENTINI, 2004. "Statistical calibration of psychometric tests," Departmental Working Papers 2004-16, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    20. Jensen, D.R. & Ramirez, D.E., 2009. "Concentration reversals in ridge regression," Statistics & Probability Letters, Elsevier, vol. 79(21), pages 2237-2241, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:64:y:2002:i:3:p:519-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.