IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v40y2013i6p1172-1188.html
   My bibliography  Save this article

Modelling small and medium enterprise loan defaults as rare events: the generalized extreme value regression model

Author

Listed:
  • Raffaella Calabrese
  • Silvia Angela Osmetti

Abstract

A pivotal characteristic of credit defaults that is ignored by most credit scoring models is the rarity of the event. The most widely used model to estimate the probability of default is the logistic regression model. Since the dependent variable represents a rare event, the logistic regression model shows relevant drawbacks, for example, underestimation of the default probability, which could be very risky for banks. In order to overcome these drawbacks, we propose the generalized extreme value regression model. In particular, in a generalized linear model (GLM) with the binary-dependent variable we suggest the quantile function of the GEV distribution as link function, so our attention is focused on the tail of the response curve for values close to one. The estimation procedure used is the maximum-likelihood method. This model accommodates skewness and it presents a generalisation of GLMs with complementary log--log link function. We analyse its performance by simulation studies. Finally, we apply the proposed model to empirical data on Italian small and medium enterprises.

Suggested Citation

  • Raffaella Calabrese & Silvia Angela Osmetti, 2013. "Modelling small and medium enterprise loan defaults as rare events: the generalized extreme value regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(6), pages 1172-1188, June.
  • Handle: RePEc:taf:japsta:v:40:y:2013:i:6:p:1172-1188
    DOI: 10.1080/02664763.2013.784894
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2013.784894
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2013.784894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Zanin, 2018. "The pyramid of Okun’s coefficient for Italy," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 45(1), pages 17-28, February.
    2. Gintare Giriūniene & Lukas Giriūnas & Mangirdas Morkunas & Laura Brucaite, 2019. "A Comparison on Leading Methodologies for Bankruptcy Prediction: The Case of the Construction Sector in Lithuania," Economies, MDPI, vol. 7(3), pages 1-20, August.
    3. Jong-Min Kim & Chanho Cho & Chulhee Jun & Won Yong Kim, 2020. "The Changing Dynamics of Board Independence: A Copula Based Quantile Regression Approach," JRFM, MDPI, vol. 13(11), pages 1-21, October.
    4. Keijo Kohv & Oliver Lukason, 2021. "What Best Predicts Corporate Bank Loan Defaults? An Analysis of Three Different Variable Domains," Risks, MDPI, vol. 9(2), pages 1-19, January.
    5. Lisa Crosato & Caterina Liberati & Marco Repetto, 2021. "Look Who's Talking: Interpretable Machine Learning for Assessing Italian SMEs Credit Default," Papers 2108.13914, arXiv.org, revised Sep 2021.
    6. Papanikolaou, Nikolaos I., 2018. "To be bailed out or to be left to fail? A dynamic competing risks hazard analysis," Journal of Financial Stability, Elsevier, vol. 34(C), pages 61-85.
    7. Athanasios Triantafyllou & George Dotsis & Alexandros Sarris, 2020. "Assessing the Vulnerability to Price Spikes in Agricultural Commodity Markets," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(3), pages 631-651, September.
    8. Zhu, You & Zhou, Li & Xie, Chi & Wang, Gang-Jin & Nguyen, Truong V., 2019. "Forecasting SMEs' credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach," International Journal of Production Economics, Elsevier, vol. 211(C), pages 22-33.
    9. Calabrese, Raffaella & Degl’Innocenti, Marta & Osmetti, Silvia Angela, 2017. "The effectiveness of TARP-CPP on the US banking industry: A new copula-based approach," European Journal of Operational Research, Elsevier, vol. 256(3), pages 1029-1037.
    10. Andreeva, Galina & Calabrese, Raffaella & Osmetti, Silvia Angela, 2016. "A comparative analysis of the UK and Italian small businesses using Generalised Extreme Value models," European Journal of Operational Research, Elsevier, vol. 249(2), pages 506-516.
    11. Brathwaite, Timothy & Walker, Joan L., 2018. "Asymmetric, closed-form, finite-parameter models of multinomial choice," Journal of choice modelling, Elsevier, vol. 29(C), pages 78-112.
    12. Stevenson, Matthew & Mues, Christophe & Bravo, Cristián, 2021. "The value of text for small business default prediction: A Deep Learning approach," European Journal of Operational Research, Elsevier, vol. 295(2), pages 758-771.
    13. Calabrese, Raffaella & Crook, Jonathan, 2020. "Spatial contagion in mortgage defaults: A spatial dynamic survival model with time and space varying coefficients," European Journal of Operational Research, Elsevier, vol. 287(2), pages 749-761.
    14. Katarina Valaskova & Tomas Kliestik & Lucia Svabova & Peter Adamko, 2018. "Financial Risk Measurement and Prediction Modelling for Sustainable Development of Business Entities Using Regression Analysis," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    15. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    16. Raffaella Calabrese & Silvia Osmetti, 2014. "Modelling cross-border systemic risk in the European banking sector: a copula approach," Papers 1411.1348, arXiv.org.
    17. Diego Andrés Correa-Mejía & Mauricio Lopera-Castaño, 2020. "Financial ratios as a powerful instrument to predict insolvency; a study using boosting algorithms in Colombian firms," Estudios Gerenciales, Universidad Icesi, vol. 36(155), pages 229-238, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:40:y:2013:i:6:p:1172-1188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.