IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i5p913-926.html
   My bibliography  Save this article

A mixture model for the detection of Neosporosis without a gold standard

Author

Listed:
  • Andr�s Farall
  • Ricardo Maronna
  • Tomás Tetzlaff

Abstract

Neosporosis is a bovine disease caused by the parasite Neospora caninum . It is not yet sufficiently studied, and it is supposed to cause an important number of abortions. Its clinical symptoms do not yet allow the reliable identification of infected animals. Its study and treatment would improve if a test based on antibody counts were available. Knowing the distribution functions of observed counts of uninfected and infected cows would allow the determination of a cutoff value. These distributions cannot be estimated directly. This paper deals with the indirect estimation of these distributions based on a data set consisting of the antibody counts for some 200 pairs of cows and their calves. The desired distributions are estimated through a mixture model based on simple assumptions that describe the relationship between each cow and its calf. The model then allows the estimation of the cutoff value and of the error probabilities.

Suggested Citation

  • Andr�s Farall & Ricardo Maronna & Tomás Tetzlaff, 2011. "A mixture model for the detection of Neosporosis without a gold standard," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 913-926, February.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:5:p:913-926
    DOI: 10.1080/02664761003692381
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664761003692381
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664761003692381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Zou, 2002. "On empirical likelihood for a semiparametric mixture model," Biometrika, Biometrika Trust, vol. 89(1), pages 61-75, March.
    2. Peter Hall & Amnon Neeman & Reza Pakyari & Ryan Elmore, 2005. "Nonparametric inference in multivariate mixtures," Biometrika, Biometrika Trust, vol. 92(3), pages 667-678, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Compiani & Yuichi Kitamura, 2016. "Using mixtures in econometric models: a brief review and some new results," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 95-127, October.
    2. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2016. "Non-parametric estimation of finite mixtures from repeated measurements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 211-229, January.
    3. Áureo de Paula, 2013. "Econometric Analysis of Games with Multiple Equilibria," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 107-131, May.
    4. Moming Li & Guoqing Diao & Jing Qin, 2020. "On symmetric semiparametric two‐sample problem," Biometrics, The International Biometric Society, vol. 76(4), pages 1216-1228, December.
    5. repec:hal:spmain:info:hdl:2441/etefo8s8r89oamhnhiclqr530 is not listed on IDEAS
    6. repec:spo:wpmain:info:hdl:2441/etefo8s8r89oamhnhiclqr530 is not listed on IDEAS
    7. Wang, Chunlin & Marriott, Paul & Li, Pengfei, 2017. "Testing homogeneity for multiple nonnegative distributions with excess zero observations," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 146-157.
    8. Hiroyuki Kasahara & Katsumi Shimotsu, 2014. "Non-parametric identification and estimation of the number of components in multivariate mixtures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 97-111, January.
    9. Yufan Wang & Xingzhong Xu, 2023. "Homogeneity Test for Multiple Semicontinuous Data with the Density Ratio Model," Mathematics, MDPI, vol. 11(17), pages 1-28, September.
    10. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2014. "Estimating Multivariate Latent-Structure Models," SciencePo Working papers Main hal-01097135, HAL.
    11. Áureo de Paula & Xun Tang, 2012. "Inference of Signs of Interaction Effects in Simultaneous Games With Incomplete Information," Econometrica, Econometric Society, vol. 80(1), pages 143-172, January.
    12. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2013. "Nonparametric estimation of finite mixtures," SciencePo Working papers Main hal-00972868, HAL.
    13. Jing Qin & Denis H. Y. Leung, 2004. "A Semi-parametric Two-component “Compound” Mixture Model and Its Application to Estimating Malaria Attributable Fractions," Working Papers 17-2004, Singapore Management University, School of Economics.
    14. Hiroyuki Kasahara & Katsumi Shimotsu, 2006. "Nonparametric Identification And Estimation Of Finite Mixture Models Of Dynamic Discrete Choices," Working Paper 1092, Economics Department, Queen's University.
    15. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2014. "Nonparametric estimation of finite measures," CeMMAP working papers 11/14, Institute for Fiscal Studies.
    16. Chuan Hong & Yang Ning & Shuang Wang & Hao Wu & Raymond J. Carroll & Yong Chen, 2017. "PLEMT: A Novel Pseudolikelihood-Based EM Test for Homogeneity in Generalized Exponential Tilt Mixture Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1393-1404, October.
    17. Higgins, Ayden & Jochmans, Koen, 2023. "Identification of mixtures of dynamic discrete choices," Journal of Econometrics, Elsevier, vol. 237(1).
    18. Xiaotian Zhu & David R. Hunter, 2016. "Theoretical grounding for estimation in conditional independence multivariate finite mixture models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 683-701, October.
    19. repec:spo:wpmain:info:hdl:2441/7o52iohb7k6srk09n8t4k21sm is not listed on IDEAS
    20. Yufan Wang & Xingzhong Xu, 2023. "A Posterior p -Value for Homogeneity Testing of the Three-Sample Problem," Mathematics, MDPI, vol. 11(18), pages 1-25, September.
    21. repec:hal:wpspec:info:hdl:2441/7o52iohb7k6srk09n8t4k21sm is not listed on IDEAS
    22. D’Haultfœuille, Xavier & Février, Philippe, 2015. "Identification of mixture models using support variations," Journal of Econometrics, Elsevier, vol. 189(1), pages 70-82.
    23. Hiroyuki Kasahara & Katsumi Shimotsu, 2007. "Nonparametric Identification And Estimation Of Multivariate Mixtures," Working Paper 1153, Economics Department, Queen's University.
    24. repec:hal:spmain:info:hdl:2441/7o52iohb7k6srk09n8t4k21sm is not listed on IDEAS
    25. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2014. "Nonparametric spectral-based estimation of latent structures," CeMMAP working papers 18/14, Institute for Fiscal Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:5:p:913-926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.