IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1153.html
   My bibliography  Save this paper

Nonparametric Identification And Estimation Of Multivariate Mixtures

Author

Listed:
  • Hiroyuki Kasahara

    (Department of Economics, University of Western Ontario)

  • Katsumi Shimotsu

    (Department of Economics, Queen's University)

Abstract

We study nonparametric identifiability of finite mixture models of k-variate data with M subpopulations, in which the components of the data vector are independent conditional on belonging to a subpopulation. We provide a sufficient condition for nonparametrically identifying M subpopulations when k>=3. Our focus is on the relationship between the number of values the components of the data vector can take on, and the number of identifiable subpopulations. Intuition would suggest that if the data vector can take many different values, then combining information from these different values helps identification. Hall and Zhou (2003) show, however, when k=2, two-component finite mixture models are not nonparametrically identifiable regardless of the number of the values the data vector can take. When k>=3, there emerges a link between the variation in the data vector, and the number of identifiable subpopulations: the number of identifiable subpopulations increases as the data vector takes on additional (different) values. This points to the possibility of identifying many components even when k=3, if the data vector has a continuously distributed element. Our identification method is constructive, and leads to an estimation strategy. It is not as efficient as the MLE, but can be used as the initial value of the optimization algorithm in computing the MLE. We also provide a sufficient condition for identifying the number of nonparametrically identifiable components, and develop a method for statistically testing and consistently estimating the number of nonparametrically identifiable components. We extend these procedures to develop a test for the number of components in binomial mixtures.

Suggested Citation

  • Hiroyuki Kasahara & Katsumi Shimotsu, 2007. "Nonparametric Identification And Estimation Of Multivariate Mixtures," Working Paper 1153, Economics Department, Queen's University.
  • Handle: RePEc:qed:wpaper:1153
    as

    Download full text from publisher

    File URL: https://www.econ.queensu.ca/sites/econ.queensu.ca/files/qed_wp_1153.pdf
    File Function: First version 2007
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cragg, John G. & Donald, Stephen G., 1997. "Inferring the rank of a matrix," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 223-250.
    2. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    3. Robin, Jean-Marc & Smith, Richard J., 2000. "Tests Of Rank," Econometric Theory, Cambridge University Press, vol. 16(2), pages 151-175, April.
    4. T. Anderson, 1954. "On estimation of parameters in latent structure analysis," Psychometrika, Springer;The Psychometric Society, vol. 19(1), pages 1-10, March.
    5. Xiao-Hua Zhou & Pete Castelluccio & Chuan Zhou, 2005. "Nonparametric Estimation of ROC Curves in the Absence of a Gold Standard," Biometrics, The International Biometric Society, vol. 61(2), pages 600-609, June.
    6. T. P. Hettmansperger & Hoben Thomas, 2000. "Almost nonparametric inference for repeated measures in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 811-825.
    7. Peter Hall & Amnon Neeman & Reza Pakyari & Ryan Elmore, 2005. "Nonparametric inference in multivariate mixtures," Biometrika, Biometrika Trust, vol. 92(3), pages 667-678, September.
    8. W. Gibson, 1955. "An extension of Anderson's solution for the latent structure equations," Psychometrika, Springer;The Psychometric Society, vol. 20(1), pages 69-73, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Yingying & Lewbel, Arthur, 2011. "Nonparametric identification of a binary random factor in cross section data," Journal of Econometrics, Elsevier, vol. 163(2), pages 163-171, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dauphin, Anyck & El Lahga, Abdel-Rahmen & Fortin, Bernard & Lacroix, Guy, 2006. "Choix de consommation des ménages en présence de plusieurs décideurs," L'Actualité Economique, Société Canadienne de Science Economique, vol. 82(1), pages 87-118, mars-juin.
    2. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2016. "Non-parametric estimation of finite mixtures from repeated measurements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 211-229, January.
    3. Caglayan, Mustafa & Jehan, Zainab & Mouratidis, Kostas, 2012. "Asymmetric monetary policy rules for open economies: Evidence from four countries," MPRA Paper 37401, University Library of Munich, Germany.
    4. repec:hal:spmain:info:hdl:2441/etefo8s8r89oamhnhiclqr530 is not listed on IDEAS
    5. repec:spo:wpmain:info:hdl:2441/etefo8s8r89oamhnhiclqr530 is not listed on IDEAS
    6. Richard Smith, 2005. "Weak instruments and empirical likelihood: a discussion of the papers by DWK Andrews and JH Stock and Y Kitamura," CeMMAP working papers CWP13/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2013. "Nonparametric estimation of finite mixtures," SciencePo Working papers hal-00972868, HAL.
    8. Qihui Chen & Zheng Fang, 2018. "Improved Inference on the Rank of a Matrix," Papers 1812.02337, arXiv.org, revised Mar 2019.
    9. Hiroyuki Kasahara & Katsumi Shimotsu, 2014. "Non-parametric identification and estimation of the number of components in multivariate mixtures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 97-111, January.
    10. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2014. "Estimating Multivariate Latent-Structure Models," Working Papers hal-01097135, HAL.
    11. Al-Sadoon, Majid M., 2019. "Testing subspace Granger causality," Econometrics and Statistics, Elsevier, vol. 9(C), pages 42-61.
    12. Fortuna, Natercia, 2008. "Local rank tests in a multivariate nonparametric relationship," Journal of Econometrics, Elsevier, vol. 142(1), pages 162-182, January.
    13. Hiroyuki Kasahara & Katsumi Shimotsu, 2006. "Nonparametric Identification And Estimation Of Finite Mixture Models Of Dynamic Discrete Choices," Working Paper 1092, Economics Department, Queen's University.
    14. Jean-Marc Robin & Stéphane Bonhomme & Koen Jochmans, 2014. "Estimating Multivariate Latent-Structure Models," Sciences Po Economics Discussion Papers 2014-18, Sciences Po Departement of Economics.
    15. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2014. "Nonparametric estimation of finite measures," CeMMAP working papers 11/14, Institute for Fiscal Studies.
    16. Melolinna, Marko, 2008. "Using financial markets information to identify oil supply shocks in a restricted VAR," Bank of Finland Research Discussion Papers 9/2008, Bank of Finland.
    17. Kleibergen, Frank, 2007. "Generalizing weak instrument robust IV statistics towards multiple parameters, unrestricted covariance matrices and identification statistics," Journal of Econometrics, Elsevier, vol. 139(1), pages 181-216, July.
    18. Marko Melolinna, 2011. "Using Financial Markets Information to Identify Oil Supply Shocks in a Restricted VAR," Finnish Economic Papers, Finnish Economic Association, vol. 24(1), pages 33-54, Spring.
    19. Al-Sadoon, Majid M., 2017. "A unifying theory of tests of rank," Journal of Econometrics, Elsevier, vol. 199(1), pages 49-62.
    20. Anyck Dauphin & Abdel‐Rahmen El Lahga & Bernard Fortin & Guy Lacroix, 2011. "Are Children Decision‐Makers within the Household?," Economic Journal, Royal Economic Society, vol. 121(553), pages 871-903, June.
    21. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2014. "Nonparametric spectral-based estimation of latent structures," CeMMAP working papers CWP18/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    22. Ignace De Vos & Gerdie Everaert & Vasilis Sarafidis, 2021. "A method for evaluating the rank condition for CCE estimators," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 21/1013, Ghent University, Faculty of Economics and Business Administration.

    More about this item

    Keywords

    finite mixture; binomial mixture; model selection; number of components; rank estimation;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark Babcock (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.