IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i17p3789-d1232327.html
   My bibliography  Save this article

Homogeneity Test for Multiple Semicontinuous Data with the Density Ratio Model

Author

Listed:
  • Yufan Wang

    (School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China)

  • Xingzhong Xu

    (School of Mathematical Science, Shenzhen University, Shenzhen 518060, China)

Abstract

The density ratio model has been widely used in many research fields. To test the homogeneity of the model, the empirical likelihood ratio test (ELRT) has been shown to be valid. In this paper, we conduct a parametric test procedure. We transform the hypothesis of homogeneity to one on the equality of mean parameters of the exponential family of distributions. Then, we propose a modified Wald test and give its asymptotic power. We further apply it to the semicontinuous case when there is an excess of zeros in the sample. The simulation studies show that the new test controls the type-I error better than ELRT while retaining competitive power. Benefiting from the simple closed form of the test statistic, the computational cost is small. We also use a real data example to illustrate the effectiveness of our test.

Suggested Citation

  • Yufan Wang & Xingzhong Xu, 2023. "Homogeneity Test for Multiple Semicontinuous Data with the Density Ratio Model," Mathematics, MDPI, vol. 11(17), pages 1-28, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3789-:d:1232327
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/17/3789/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/17/3789/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markus Pauly & Edgar Brunner & Frank Konietschke, 2015. "Asymptotic permutation tests in general factorial designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 461-473, March.
    2. F. Zou, 2002. "On empirical likelihood for a semiparametric mixture model," Biometrika, Biometrika Trust, vol. 89(1), pages 61-75, March.
    3. Zhang, Biao, 2002. "Assessing Goodness-of-Fit of Generalized Logit Models Based on Case-Control Data," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 17-38, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chunlin & Marriott, Paul & Li, Pengfei, 2017. "Testing homogeneity for multiple nonnegative distributions with excess zero observations," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 146-157.
    2. Yufan Wang & Xingzhong Xu, 2023. "A Posterior p -Value for Homogeneity Testing of the Three-Sample Problem," Mathematics, MDPI, vol. 11(18), pages 1-25, September.
    3. Liugen Xue, 2010. "Empirical Likelihood Local Polynomial Regression Analysis of Clustered Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 644-663, December.
    4. Smaga, Łukasz, 2015. "Wald-type statistics using {2}-inverses for hypothesis testing in general factorial designs," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 215-220.
    5. Dickhaus, Thorsten & Sirotko-Sibirskaya, Natalia, 2019. "Simultaneous statistical inference in dynamic factor models: Chi-square approximation and model-based bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 30-46.
    6. Marinho Bertanha & Eunyi Chung, 2023. "Permutation Tests at Nonparametric Rates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2833-2846, October.
    7. Giovanni Compiani & Yuichi Kitamura, 2016. "Using mixtures in econometric models: a brief review and some new results," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 95-127, October.
    8. Moming Li & Guoqing Diao & Jing Qin, 2020. "On symmetric semiparametric two‐sample problem," Biometrics, The International Biometric Society, vol. 76(4), pages 1216-1228, December.
    9. Meng Yuan & Chunlin Wang & Boxi Lin & Pengfei Li, 2022. "Semiparametric inference on general functionals of two semicontinuous populations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 451-472, June.
    10. H. V. Kulkarni & S. M. Patil, 2021. "Uniformly implementable small sample integrated likelihood ratio test for one-way and two-way ANOVA under heteroscedasticity and normality," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 273-305, June.
    11. Friedrich, Sarah & Brunner, Edgar & Pauly, Markus, 2017. "Permuting longitudinal data in spite of the dependencies," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 255-265.
    12. Stefano Bonnini & Getnet Melak Assegie & Kamila Trzcinska, 2024. "Review about the Permutation Approach in Hypothesis Testing," Mathematics, MDPI, vol. 12(17), pages 1-29, August.
    13. Chung, EunYi & Romano, Joseph P., 2016. "Multivariate and multiple permutation tests," Journal of Econometrics, Elsevier, vol. 193(1), pages 76-91.
    14. Dennis Dobler & Markus Pauly, 2018. "Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 639-658, September.
    15. Marc Ditzhaus & Arnold Janssen, 2020. "Bootstrap and permutation rank tests for proportional hazards under right censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 493-517, July.
    16. Wang, Chunlin & Marriott, Paul & Li, Pengfei, 2018. "Semiparametric inference on the means of multiple nonnegative distributions with excess zero observations," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 182-197.
    17. OrI Davidov & Konstantinos Fokianos & George Iliopoulos, 2014. "Semiparametric Inference for the Two-way Layout Under Order Restrictions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 622-638, September.
    18. Jing Qin & Denis H. Y. Leung, 2004. "A Semi-parametric Two-component “Compound” Mixture Model and Its Application to Estimating Malaria Attributable Fractions," Working Papers 17-2004, Singapore Management University, School of Economics.
    19. Federico Bugni & Jackson Bunting & Muyang Ren, 2024. "Marginal homogeneity tests with panel data," Papers 2408.15862, arXiv.org.
    20. Jesse Hemerik & Jelle J. Goeman & Livio Finos, 2020. "Robust testing in generalized linear models by sign flipping score contributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 841-864, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3789-:d:1232327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.