IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v92y2005i3p667-678.html
   My bibliography  Save this article

Nonparametric inference in multivariate mixtures

Author

Listed:
  • Peter Hall
  • Amnon Neeman
  • Reza Pakyari
  • Ryan Elmore

Abstract

We consider mixture models in which the components of data vectors from any given subpopulation are statistically independent, or independent in blocks. We argue that if, under this condition of independence, we take a nonparametric view of the problem and allow the number of subpopulations to be quite general, the distributions and mixing proportions can often be estimated root-n consistently. Indeed, we show that, if the data are k-variate and there are p subpopulations, then for each p ⩾ 2 there is a minimal value of k, k-sub-p say, such that the mixture problem is always nonparametrically identifiable, and all distributions and mixture proportions are nonparametrically identifiable when k ⩾ k-sub-p. We treat the case p = 2 in detail, and there we show how to construct explicit distribution, density and mixture-proportion estimators, converging at conventional rates. Other values of p can be addressed using a similar approach, although the methodology becomes rapidly more complex as p increases. Copyright 2005, Oxford University Press.

Suggested Citation

  • Peter Hall & Amnon Neeman & Reza Pakyari & Ryan Elmore, 2005. "Nonparametric inference in multivariate mixtures," Biometrika, Biometrika Trust, vol. 92(3), pages 667-678, September.
  • Handle: RePEc:oup:biomet:v:92:y:2005:i:3:p:667-678
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/92.3.667
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:92:y:2005:i:3:p:667-678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.