IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i3p605-617.html
   My bibliography  Save this article

On the restricted almost unbiased estimators in linear regression

Author

Listed:
  • Jianwen Xu
  • Hu Yang

Abstract

In this paper, the restricted almost unbiased ridge regression estimator and restricted almost unbiased Liu estimator are introduced for the vector of parameters in a multiple linear regression model with linear restrictions. The bias, variance matrices and mean square error (MSE) of the proposed estimators are derived and compared. It is shown that the proposed estimators will have smaller quadratic bias but larger variance than the corresponding competitors in literatures. However, they will respectively outperform the latter according to the MSE criterion under certain conditions. Finally, a simulation study and a numerical example are given to illustrate some of the theoretical results.

Suggested Citation

  • Jianwen Xu & Hu Yang, 2011. "On the restricted almost unbiased estimators in linear regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(3), pages 605-617, November.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:3:p:605-617
    DOI: 10.1080/02664760903521484
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664760903521484
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760903521484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Groß, Jürgen, 2003. "Restricted ridge estimation," Statistics & Probability Letters, Elsevier, vol. 65(1), pages 57-64, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    2. Jahufer, Aboobacker & Jianbao, Chen, 2009. "Assessing global influential observations in modified ridge regression," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 513-518, February.
    3. Roozbeh, M. & Arashi, M., 2013. "Feasible ridge estimator in partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 35-44.
    4. M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
    5. M. Alkhamisi, 2010. "Simulation study of new estimators combining the SUR ridge regression and the restricted least squares methodologies," Statistical Papers, Springer, vol. 51(3), pages 651-672, September.
    6. Yalian Li & Hu Yang, 2010. "A new stochastic mixed ridge estimator in linear regression model," Statistical Papers, Springer, vol. 51(2), pages 315-323, June.
    7. Bahadır Yüzbaşı & S. Ejaz Ahmed, 2020. "Ridge Type Shrinkage Estimation of Seemingly Unrelated Regressions And Analytics of Economic and Financial Data from “Fragile Five” Countries," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    8. Hu Yang & Jianwen Xu, 2011. "Preliminary test Liu estimators based on the conflicting W, LR and LM tests in a regression model with multivariate Student-t error," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(3), pages 275-292, May.
    9. M. Revan Özkale, 2014. "The relative efficiency of the restricted estimators in linear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 998-1027, May.
    10. Yalian Li & Hu Yang, 2019. "Performance of the restricted almost unbiased type principal components estimators in linear regression model," Statistical Papers, Springer, vol. 60(1), pages 19-34, February.
    11. M. Revan Özkale & Hans Nyquist, 2021. "The stochastic restricted ridge estimator in generalized linear models," Statistical Papers, Springer, vol. 62(3), pages 1421-1460, June.
    12. Özkale, M. Revan, 2009. "A stochastic restricted ridge regression estimator," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1706-1716, September.
    13. M. Alkhamisi & I. MacNeill, 2015. "Recent results in ridge regression methods," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 359-376, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:3:p:605-617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.