IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i8p1706-1716.html
   My bibliography  Save this article

A stochastic restricted ridge regression estimator

Author

Listed:
  • Özkale, M. Revan

Abstract

Groß [J. Groß, Restricted ridge estimation, Statistics & Probability Letters 65 (2003) 57-64] proposed a restricted ridge regression estimator when exact restrictions are assumed to hold. When there are stochastic linear restrictions on the parameter vector, we introduce a new estimator by combining ideas underlying the mixed and the ridge regression estimators under the assumption that the errors are not independent and identically distributed. Apart from [J. Groß, Restricted ridge estimation, Statistics & Probability Letters 65 (2003) 57-64], we call this new estimator as the stochastic restricted ridge regression (SRRR) estimator. The performance of the SRRR estimator over the mixed estimator in respect of the variance and the mean square error matrices is examined. We also illustrate our findings with a numerical example. The shrinkage generalized least squares (GLS) and the stochastic restricted shrinkage GLS estimators are proposed.

Suggested Citation

  • Özkale, M. Revan, 2009. "A stochastic restricted ridge regression estimator," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1706-1716, September.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:8:p:1706-1716
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00040-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Godfrey, Leslie G, 1978. "Testing for Higher Order Serial Correlation in Regression Equations When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1303-1310, November.
    2. Trenkler, G., 1984. "On the performance of biased estimators in the linear regression model with correlated or heteroscedastic errors," Journal of Econometrics, Elsevier, vol. 25(1-2), pages 179-190.
    3. Groß, Jürgen, 2003. "Restricted ridge estimation," Statistics & Probability Letters, Elsevier, vol. 65(1), pages 57-64, October.
    4. Godfrey, Leslie G, 1978. "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1293-1301, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Revan Özkale & Hans Nyquist, 2021. "The stochastic restricted ridge estimator in generalized linear models," Statistical Papers, Springer, vol. 62(3), pages 1421-1460, June.
    2. Zhang, Weiwei & Li, Gaorong & Xue, Liugen, 2011. "Profile inference on partially linear varying-coefficient errors-in-variables models under restricted condition," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3027-3040, November.
    3. Jiewu Huang & Hu Yang, 2015. "On a principal component two-parameter estimator in linear model with autocorrelated errors," Statistical Papers, Springer, vol. 56(1), pages 217-230, February.
    4. F. Ghapani & A. R. Rasekh & B. Babadi, 2018. "The weighted ridge estimator in stochastic restricted linear measurement error models," Statistical Papers, Springer, vol. 59(2), pages 709-723, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages 32-61, March.
    2. Luciano Gutierrez, 2017. "Impacts of El Niño-Southern Oscillation on the wheat market: A global dynamic analysis," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-22, June.
    3. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2008. "Modelling the US, UK and Japanese unemployment rates: Fractional integration and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4998-5013, July.
    4. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    5. Hany Abdel-Latif & Tapas Mishra & Anita Staneva, 2019. "Arab Countries between Winter and Spring: Where Democracy Shock Goes Next!," Economies, MDPI, vol. 7(1), pages 1-19, March.
    6. Eric Levin & Gwilym Pryce, 2011. "A Disequilibrium Model of the Market for Houses: Implicit Selling Time as a Signal of Optimal Holding Periods and Buyer Valuation," Urban Studies, Urban Studies Journal Limited, vol. 48(11), pages 2249-2263, August.
    7. Belsley, David A, 1997. "A Small-Sample Correction for Testing for gth-Order Serial Correlation with Artificial Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 10(3), pages 197-229, August.
    8. Todd Sarnstrom & Michael Ryan, 2023. "Third‐country exchange rate effects on foreign direct investment flows: A global vector autoregessive approach," Review of International Economics, Wiley Blackwell, vol. 31(2), pages 522-549, May.
    9. Gabriele Fiorentini & Enrique Sentana, 2016. "Neglected serial correlation tests in UCARIMA models," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 121-178, March.
    10. Baltagi, Badi H. & Li, Qi, 1995. "Testing AR(1) against MA(1) disturbances in an error component model," Journal of Econometrics, Elsevier, vol. 68(1), pages 133-151, July.
    11. Gil-Alana, Luis A., 2011. "Inflation in South Africa. A long memory approach," Economics Letters, Elsevier, vol. 111(3), pages 207-209, June.
    12. Erum Toor & Tanweer Ul Islam, 2019. "Power Comparison of Autocorrelation Tests in Dynamic Models," International Econometric Review (IER), Econometric Research Association, vol. 11(2), pages 58-69, September.
    13. Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
    14. Mahmood, Talat, 1990. "Die Dynamik der Rentabilität als stochastischer Prozess: eine empirische Zeitreihenanalyse von ausgewählten deutschen und amerikanischen Unternehmen. Vom Fachbereich 20 Informatik der Technischen Univ," EconStor Books, ZBW - Leibniz Information Centre for Economics, number 112236.
    15. Giancarlo Marini & Alessandro Piergallini, 2008. "Indicators and Tests of Fiscal Sustainability: An Integrated Approach," CEIS Research Paper 111, Tor Vergata University, CEIS, revised 11 Jul 2008.
    16. Kerry B. Hudson & Joaquin L. Vespignani, 2014. "Understanding the Deviations of the Taylor Rule: A New Methodology with an Application to Australia," CAMA Working Papers 2014-78, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    17. Chinn, Menzie D & Frankel, Jeffrey A, 1995. "Who drives real interest rates around the Pacific Rim: the USA or Japan?," Journal of International Money and Finance, Elsevier, vol. 14(6), pages 801-821, December.
    18. Kang, Jin-Su & Downing, Stephen, 2015. "Keystone effect on entry into two-sided markets: An analysis of the market entry of WiMAX," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 170-186.
    19. Monge, Manuel & Gil-Alana, Luis A. & Pérez de Gracia, Fernando, 2017. "Crude oil price behaviour before and after military conflicts and geopolitical events," Energy, Elsevier, vol. 120(C), pages 79-91.
    20. Eric J. Levin & Robert E. Wright, 2002. "Estimating the price elasticity of demand in the London stock market," The European Journal of Finance, Taylor & Francis Journals, vol. 8(2), pages 222-237, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:8:p:1706-1716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.