IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2024i1p15-d1551838.html
   My bibliography  Save this article

New Stochastic Restricted Biased Regression Estimators

Author

Listed:
  • Issam Dawoud

    (Department of Mathematics, Al-Aqsa University, Gaza 4051, Palestine)

  • Hussein Eledum

    (Department of Statistics, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia)

Abstract

In this paper, we propose three stochastic restricted biased estimators for the linear regression model. These new estimators generalize the least squares estimator, mixed estimator, and biased estimator. We derive the necessary and sufficient conditions for the superiority of the proposed estimators over existing ones, as well as their relative superiority among each other, using the mean squared error matrix as a criterion. A simulation study is conducted to validate the theoretical findings, and two real-world examples are provided to demonstrate the practical advantages of the proposed estimators.

Suggested Citation

  • Issam Dawoud & Hussein Eledum, 2024. "New Stochastic Restricted Biased Regression Estimators," Mathematics, MDPI, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:gam:jmathe:v:13:y:2024:i:1:p:15-:d:1551838
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/1/15/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/1/15/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2024:i:1:p:15-:d:1551838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.