IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i4p513-518.html
   My bibliography  Save this article

Assessing global influential observations in modified ridge regression

Author

Listed:
  • Jahufer, Aboobacker
  • Jianbao, Chen

Abstract

We occasionally find that a small subset of the data exerts a disproportionate influence on the fitted regression model. That is, parameter estimates or predictions may depend more on the influential subset than on the majority of the data. We would like to locate these influential points and assess their impact on the model. If these influential points are bad values then they should be eliminated. On the other hand, there may be nothing wrong with these points, but if they control key model properties, as we would like for them to, they could affect the use of the model. When modified ridge regression (MRR) is used to mitigate the effects of multicollinearity, the influence of observations can be drastically modified. In this paper, we propose a case deletion formula to detect influential points in MRR. The [Longley, J.W., 1967. An appraisal of least squares programs for electronic computers from the point of view of the user. Journal of American Statistical Association 62, 819-841] data is used to illustrate our methodology.

Suggested Citation

  • Jahufer, Aboobacker & Jianbao, Chen, 2009. "Assessing global influential observations in modified ridge regression," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 513-518, February.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:4:p:513-518
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00459-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Groß, Jürgen, 2003. "Restricted ridge estimation," Statistics & Probability Letters, Elsevier, vol. 65(1), pages 57-64, October.
    2. Shi, Lei & Wang, Xueren, 1999. "Local influence in ridge regression," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 341-353, September.
    3. Hernán Rubio & Luis Firinguetti, 2002. "The Distribution of Stochastic Shrinkage Parameters in Ridge Regression," Working Papers Central Bank of Chile 137, Central Bank of Chile.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hadi Emami, 2018. "Local influence for Liu estimators in semiparametric linear models," Statistical Papers, Springer, vol. 59(2), pages 529-544, June.
    2. Hadi Emami & Mostafa Emami, 2016. "New influence diagnostics in ridge regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(3), pages 476-489, March.
    3. M. Revan Özkale & Stanley Lemeshow & Rodney Sturdivant, 2018. "Logistic regression diagnostics in ridge regression," Computational Statistics, Springer, vol. 33(2), pages 563-593, June.
    4. T. Söküt Açar & M.R. Özkale, 2016. "Influence measures based on confidence ellipsoids in general linear regression model with correlated regressors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2791-2812, November.
    5. Aboobacker Jahufer & Jianbao Chen, 2012. "Identifying local influential observations in Liu estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(3), pages 425-438, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    2. Hadi Emami, 2018. "Local influence for Liu estimators in semiparametric linear models," Statistical Papers, Springer, vol. 59(2), pages 529-544, June.
    3. M. Revan Özkale, 2014. "The relative efficiency of the restricted estimators in linear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 998-1027, May.
    4. Roozbeh, M. & Arashi, M., 2013. "Feasible ridge estimator in partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 35-44.
    5. M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
    6. M. Alkhamisi, 2010. "Simulation study of new estimators combining the SUR ridge regression and the restricted least squares methodologies," Statistical Papers, Springer, vol. 51(3), pages 651-672, September.
    7. Fallaw Sowell & Nandana Sengupta, 2021. "Inference for the Linear IV Model Ridge Estimator Using Training and Test Samples," Stats, MDPI, vol. 4(3), pages 1-20, September.
    8. Qingming Zou & Zhongyi Zhu & Jinglong Wang, 2009. "Local influence analysis for penalized Gaussian likelihood estimation in partially linear single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 905-918, December.
    9. Jan R. Magnus & Andrey L. Vasnev, 2007. "Local sensitivity and diagnostic tests," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 166-192, March.
    10. Vasconcellos, Klaus L.P. & Zea Fernandez, L.M., 2009. "Influence analysis with homogeneous linear restrictions," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3787-3794, September.
    11. Shi, Lei & Ojeda, Mario Miguel, 2004. "Local influence in multilevel regression for growth curves," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 282-304, November.
    12. Yalian Li & Hu Yang, 2010. "A new stochastic mixed ridge estimator in linear regression model," Statistical Papers, Springer, vol. 51(2), pages 315-323, June.
    13. Lei Shi & Md. Mostafizur Rahman & Wen Gan & Jianhua Zhao, 2015. "Stepwise local influence in generalized autoregressive conditional heteroskedasticity models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 428-444, February.
    14. Hadi Emami & Mostafa Emami, 2016. "New influence diagnostics in ridge regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(3), pages 476-489, March.
    15. Yalian Li & Hu Yang, 2019. "Performance of the restricted almost unbiased type principal components estimators in linear regression model," Statistical Papers, Springer, vol. 60(1), pages 19-34, February.
    16. Bahadır Yüzbaşı & S. Ejaz Ahmed, 2020. "Ridge Type Shrinkage Estimation of Seemingly Unrelated Regressions And Analytics of Economic and Financial Data from “Fragile Five” Countries," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    17. M. Revan Özkale & Hans Nyquist, 2021. "The stochastic restricted ridge estimator in generalized linear models," Statistical Papers, Springer, vol. 62(3), pages 1421-1460, June.
    18. Aboobacker Jahufer & Jianbao Chen, 2012. "Identifying local influential observations in Liu estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(3), pages 425-438, April.
    19. Özkale, M. Revan, 2009. "A stochastic restricted ridge regression estimator," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1706-1716, September.
    20. Hu Yang & Jianwen Xu, 2011. "Preliminary test Liu estimators based on the conflicting W, LR and LM tests in a regression model with multivariate Student-t error," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(3), pages 275-292, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:4:p:513-518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.