IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i10p2289-2302.html
   My bibliography  Save this article

A permutation test approach to the choice of size k for the nearest neighbors classifier

Author

Listed:
  • Yinglei Lai
  • Baolin Wu
  • Hongyu Zhao

Abstract

The k nearest neighbors (k-NN) classifier is one of the most popular methods for statistical pattern recognition and machine learning. In practice, the size k, the number of neighbors used for classification, is usually arbitrarily set to one or some other small numbers, or based on the cross-validation procedure. In this study, we propose a novel alternative approach to decide the size k. Based on a k-NN-based multivariate multi-sample test, we assign each k a permutation test based Z-score. The number of NN is set to the k with the highest Z-score. This approach is computationally efficient since we have derived the formulas for the mean and variance of the test statistic under permutation distribution for multiple sample groups. Several simulation and real-world data sets are analyzed to investigate the performance of our approach. The usefulness of our approach is demonstrated through the evaluation of prediction accuracies using Z-score as a criterion to select the size k. We also compare our approach to the widely used cross-validation approaches. The results show that the size k selected by our approach yields high prediction accuracies when informative features are used for classification, whereas the cross-validation approach may fail in some cases.

Suggested Citation

  • Yinglei Lai & Baolin Wu & Hongyu Zhao, 2011. "A permutation test approach to the choice of size k for the nearest neighbors classifier," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2289-2302.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:10:p:2289-2302
    DOI: 10.1080/02664763.2010.547565
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664763.2010.547565
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2010.547565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghosh, Anil K., 2006. "On optimum choice of k in nearest neighbor classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3113-3123, July.
    2. Christopher C. Holmes, 2003. "Likelihood inference in nearest-neighbour classification models," Biometrika, Biometrika Trust, vol. 90(1), pages 99-112, March.
    3. Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
    4. C. C. Holmes & N. M. Adams, 2002. "A probabilistic nearest neighbour method for statistical pattern recognition," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 295-306, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daudin, Jean-Jacques & Mary-Huard, Tristan, 2008. "Estimation of the conditional risk in classification: The swapping method," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3220-3232, February.
    2. Giuseppe Nuti, 2019. "An Efficient Algorithm for Bayesian Nearest Neighbours," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1251-1258, December.
    3. Ghosh, Anil K., 2006. "On optimum choice of k in nearest neighbor classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3113-3123, July.
    4. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    5. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    6. Luca Scrucca, 2014. "Graphical tools for model-based mixture discriminant analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 147-165, June.
    7. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    8. J. Burez & D. Van Den Poel, 2005. "CRM at a Pay-TV Company: Using Analytical Models to Reduce Customer Attrition by Targeted Marketing for Subscription Services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/348, Ghent University, Faculty of Economics and Business Administration.
    9. Won, Joong-Ho & Lim, Johan & Yu, Donghyeon & Kim, Byung Soo & Kim, Kyunga, 2014. "Monotone false discovery rate," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 86-93.
    10. Jan, Budczies & Kosztyla, Daniel & von Törne, Christian & Stenzinger, Albrecht & Darb-Esfahani, Silvia & Dietel, Manfred & Denkert, Carsten, 2014. "cancerclass: An R Package for Development and Validation of Diagnostic Tests from High-Dimensional Molecular Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i01).
    11. Jianqing Fan & Yang Feng & Jiancheng Jiang & Xin Tong, 2016. "Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 275-287, March.
    12. Márton Gosztonyi & Csákné Filep Judit, 2022. "Profiling (Non-)Nascent Entrepreneurs in Hungary Based on Machine Learning Approaches," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    13. Wang, Tao & Xu, Pei-Rong & Zhu, Li-Xing, 2012. "Non-convex penalized estimation in high-dimensional models with single-index structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 221-235.
    14. Un Jung Lee & ShengLi Tzeng & Yu-Chuan Chen & James J Chen, 2017. "Development of Predictive Signatures for Treatment Selection in Precision Medicine," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 2(4), pages 83-88, August.
    15. Alan R Dabney & John D Storey, 2007. "Optimality Driven Nearest Centroid Classification from Genomic Data," PLOS ONE, Public Library of Science, vol. 2(10), pages 1-7, October.
    16. Zhao, Jianhua & Yu, Philip L.H. & Shi, Lei & Li, Shulan, 2012. "Separable linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4290-4300.
    17. Chakraborty, Sounak, 2009. "Simultaneous cancer classification and gene selection with Bayesian nearest neighbor method: An integrated approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1462-1474, February.
    18. Shaheena Bashir & Edward Carter, 2010. "Penalized multinomial mixture logit model," Computational Statistics, Springer, vol. 25(1), pages 121-141, March.
    19. Ha-Thu Nguyen, 2015. "How is credit scoring used to predict default in China?," EconomiX Working Papers 2015-1, University of Paris Nanterre, EconomiX.
    20. Park, Junyong & Park, DoHwan, 2015. "Stein’s method in high dimensional classification and applications," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 110-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:10:p:2289-2302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.