IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v90y2003i1p99-112.html
   My bibliography  Save this article

Likelihood inference in nearest-neighbour classification models

Author

Listed:
  • Christopher C. Holmes

Abstract

Traditionally the neighbourhood size k in the k-nearest-neighbour algorithm is either fixed at the first nearest neighbour or is selected on the basis of a crossvalidation study. In this paper we present an alternative approach that develops the k-nearest-neighbour algorithm using likelihood-based inference. Our method takes the form of a generalised linear regression on a set of k-nearest-neighbour autocovariates. By defining the k-nearest-neighbour algorithm in this way we are able to extend the method to accommodate the original predictor variables as possible linear effects as well as allowing for the inclusion of multiple nearest-neighbour terms. The choice of the final model proceeds via a stepwise regression procedure. It is shown that our method incorporates a conventional generalised linear model and a conventional k-nearest-neighbour algorithm as special cases. Empirical results suggest that the method out-performs the standard k-nearest-neighbour method in terms of misclassification rate on a wide variety of datasets. Copyright Biometrika Trust 2003, Oxford University Press.

Suggested Citation

  • Christopher C. Holmes, 2003. "Likelihood inference in nearest-neighbour classification models," Biometrika, Biometrika Trust, vol. 90(1), pages 99-112, March.
  • Handle: RePEc:oup:biomet:v:90:y:2003:i:1:p:99-112
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Jin & Xingguang Geng & Yitao Zhang & Haiying Zhang & Tianchun Ye, 2023. "Pulse Wave Analysis Method of Cardiovascular Parameters Extraction for Health Monitoring," IJERPH, MDPI, vol. 20(3), pages 1-15, January.
    2. Ghosh, Anil K., 2006. "On optimum choice of k in nearest neighbor classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3113-3123, July.
    3. Yinglei Lai & Baolin Wu & Hongyu Zhao, 2011. "A permutation test approach to the choice of size k for the nearest neighbors classifier," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2289-2302.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:90:y:2003:i:1:p:99-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.