IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v32y2005i8p785-796.html
   My bibliography  Save this article

Inferences of variance function - a parametric robust way

Author

Listed:
  • Tsung-Shan Tsou

Abstract

Tsou (2003a) proposed a parametric procedure for making robust inference for mean regression parameters in the context of generalized linear models. This robust procedure is extended to model variance heterogeneity. The normal working model is adjusted to become asymptotically robust for inference about regression parameters of the variance function for practically all continuous response variables. The connection between the novel robust variance regression model and the estimating equations approach is also provided.

Suggested Citation

  • Tsung-Shan Tsou, 2005. "Inferences of variance function - a parametric robust way," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(8), pages 785-796.
  • Handle: RePEc:taf:japsta:v:32:y:2005:i:8:p:785-796
    DOI: 10.1080/02664760500079803
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760500079803
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760500079803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murray Aitkin, 1987. "Modelling Variance Heterogeneity in Normal Regression Using GLIM," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 332-339, November.
    2. Richard Royall & Tsung‐Shan Tsou, 2003. "Interpreting statistical evidence by using imperfect models: robust adjusted likelihood functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 391-404, May.
    3. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    4. Harvey, A C, 1976. "Estimating Regression Models with Multiplicative Heteroscedasticity," Econometrica, Econometric Society, vol. 44(3), pages 461-465, May.
    5. W. Douglas Stirling, 1985. "Heteroscedastic Models and an Application to Block Designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(1), pages 33-41, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsung-Shan Tsou, 2011. "Likelihood inferences for the link function without knowing the true underlying distributions," Computational Statistics, Springer, vol. 26(3), pages 507-519, September.
    2. Shen, Chung-Wei & Tsou, Tsung-Shan & Balakrishnan, N., 2011. "Robust likelihood inference for regression parameters in partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1696-1714, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
    2. Dong Jin Lee, 2009. "Testing Parameter Stability in Quantile Models: An Application to the U.S. Inflation Process," Working papers 2009-26, University of Connecticut, Department of Economics.
    3. Liu-Cang Wu & Zhong-Zhan Zhang & Deng-Ke Xu, 2012. "Variable selection in joint mean and variance models of Box--Cox transformation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(12), pages 2543-2555, August.
    4. Jan Ondrich & J. David Richardson & Shuo Zhang, 2006. "A further investigation of the link between trade and income," International Economic Journal, Taylor & Francis Journals, vol. 20(1), pages 19-36.
    5. Cysneiros, Francisco José A. & Paula, Gilberto A. & Galea, Manuel, 2007. "Heteroscedastic symmetrical linear models," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1084-1090, June.
    6. Xu, Dengke & Zhang, Zhongzhan, 2013. "A semiparametric Bayesian approach to joint mean and variance models," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1624-1631.
    7. Tsung-Shan Tsou, 2011. "Likelihood inferences for the link function without knowing the true underlying distributions," Computational Statistics, Springer, vol. 26(3), pages 507-519, September.
    8. Li-Chu Chien, 2011. "A robust diagnostic plot for explanatory variables under model mis-specification," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(1), pages 113-126.
    9. Yeşim Güney & Yetkin Tuaç & Şenay Özdemir & Olcay Arslan, 2021. "Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution," Computational Statistics, Springer, vol. 36(2), pages 805-827, June.
    10. Luc Anselin, 1988. "Model Validation in Spatial Econometrics: A Review and Evaluation of Alternative Approaches," International Regional Science Review, , vol. 11(3), pages 279-316, December.
    11. Afrânio M.C. Vieira & Roseli A. Leandro & Clarice G.B. Dem�trio & Geert Molenberghs, 2011. "Double generalized linear model for tissue culture proportion data: a Bayesian perspective," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1717-1731, September.
    12. George Leckie & Robert French & Chris Charlton & William Browne, 2014. "Modeling Heterogeneous Variance–Covariance Components in Two-Level Models," Journal of Educational and Behavioral Statistics, , vol. 39(5), pages 307-332, October.
    13. Cheng, Tsung-Chi, 2011. "Robust diagnostics for the heteroscedastic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1845-1866, April.
    14. Shen, Chung-Wei & Tsou, Tsung-Shan & Balakrishnan, N., 2011. "Robust likelihood inference for regression parameters in partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1696-1714, April.
    15. Shelley A. Blozis & Ricardo Villarreal & Sweta Thota & Nicholas Imparato, 2019. "Using a two-part mixed-effects model for understanding daily, individual-level media behavior," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(4), pages 234-250, December.
    16. Li, Kim-Hung & Chan, Nai Ng, 2000. "Degeneracy in Heteroscedastic Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 74(2), pages 282-295, August.
    17. Liucang Wu & Huiqiong Li, 2012. "Variable selection for joint mean and dispersion models of the inverse Gaussian distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(6), pages 795-808, August.
    18. Donald Hedeker & Robin J. Mermelstein & Hakan Demirtas, 2008. "An Application of a Mixed-Effects Location Scale Model for Analysis of Ecological Momentary Assessment (EMA) Data," Biometrics, The International Biometric Society, vol. 64(2), pages 627-634, June.
    19. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    20. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:32:y:2005:i:8:p:785-796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.