IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v26y2011i3p507-519.html
   My bibliography  Save this article

Likelihood inferences for the link function without knowing the true underlying distributions

Author

Listed:
  • Tsung-Shan Tsou

Abstract

No abstract is available for this item.

Suggested Citation

  • Tsung-Shan Tsou, 2011. "Likelihood inferences for the link function without knowing the true underlying distributions," Computational Statistics, Springer, vol. 26(3), pages 507-519, September.
  • Handle: RePEc:spr:compst:v:26:y:2011:i:3:p:507-519
    DOI: 10.1007/s00180-010-0222-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-010-0222-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-010-0222-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Royall & Tsung‐Shan Tsou, 2003. "Interpreting statistical evidence by using imperfect models: robust adjusted likelihood functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 391-404, May.
    2. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    3. Daryl Pregibon, 1980. "Goodness of Link Tests for Generalized Linear Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 15-24, March.
    4. Tsung-Shan Tsou, 2005. "Inferences of variance function - a parametric robust way," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(8), pages 785-796.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Chung-Wei & Tsou, Tsung-Shan & Balakrishnan, N., 2011. "Robust likelihood inference for regression parameters in partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1696-1714, April.
    2. Tsung-Shan Tsou, 2005. "Inferences of variance function - a parametric robust way," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(8), pages 785-796.
    3. José M. R. Murteira & Joaquim J. S. Ramalho, 2016. "Regression Analysis of Multivariate Fractional Data," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 515-552, April.
    4. Xianzheng Huang, 2021. "Improved wrong-model inference for generalized linear models for binary responses in the presence of link misspecification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 437-459, June.
    5. Vijverberg, Chu-Ping C. & Vijverberg, Wim P.M. & Taşpınar, Süleyman, 2016. "Linking Tukey’s legacy to financial risk measurement," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 595-615.
    6. Esmeralda A. Ramalho & Joaquim J.S. Ramalho & José M.R. Murteira, 2011. "Alternative Estimating And Testing Empirical Strategies For Fractional Regression Models," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 19-68, February.
    7. Li-Chu Chien, 2011. "A robust diagnostic plot for explanatory variables under model mis-specification," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(1), pages 113-126.
    8. Anika Reichert & Rowena Jacobs, 2018. "The impact of waiting time on patient outcomes: Evidence from early intervention in psychosis services in England," Health Economics, John Wiley & Sons, Ltd., vol. 27(11), pages 1772-1787, November.
    9. Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    10. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    11. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    12. Fernando Rios-Avila & Gustavo Canavire-Bacarreza, 2018. "Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach," Stata Journal, StataCorp LP, vol. 18(1), pages 206-222, March.
    13. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    14. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    15. Ayouz, Mourad K. & Remaud, Herve, 2003. "The Internationalization Determinants Of The Small Agro-Food Firms: Hypotheses And Statistical Tests," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 5(2), pages 1-27.
    16. Broze, Laurence & Gourieroux, Christian, 1998. "Pseudo-maximum likelihood method, adjusted pseudo-maximum likelihood method and covariance estimators," Journal of Econometrics, Elsevier, vol. 85(1), pages 75-98, July.
    17. Sridhar, Shrihari & Naik, Prasad A. & Kelkar, Ajay, 2017. "Metrics unreliability and marketing overspending," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 761-779.
    18. Yen, Steven T. & Chern, Wen S. & Lee, Hwang-Jaw, 1991. "Effects Of Income Sources On Household Food Expenditures," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271167, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    19. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    20. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:26:y:2011:i:3:p:507-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.