IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v28y2001i1p107-120.html
   My bibliography  Save this article

A new measure of nominal-ordinal association

Author

Listed:
  • Raffaella Piccarreta

Abstract

A new measure for evaluating the strength of the association between a nominal variable and an ordered categorical response variable is introduced. The introduction of a new measure is justified by analysing the characteristics of a measure of the nominal-ordinal association proposed by Agresti (1981), especially with respect to the problem of the 'choice' of a predictive variable. The sample-based version of the index is studied, and its asymptotic standard error and asymptotic distribution are derived. Simulations are considered to evaluate the adequacy of the asymptotic approximation determined, following Goodman & Kruskal (1963).

Suggested Citation

  • Raffaella Piccarreta, 2001. "A new measure of nominal-ordinal association," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(1), pages 107-120.
  • Handle: RePEc:taf:japsta:v:28:y:2001:i:1:p:107-120
    DOI: 10.1080/02664760120011635
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760120011635
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760120011635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yitzhaki, Shlomo, 1982. "Stochastic Dominance, Mean Variance, and Gini's Mean Difference," American Economic Review, American Economic Association, vol. 72(1), pages 178-185, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Perakis & P. Maravelakis & S. Psarakis & E. Xekalaki & J. Panaretos, 2005. "On Certain Indices for Ordinal Data with Unequally Weighted Classes," Quality & Quantity: International Journal of Methodology, Springer, vol. 39(5), pages 515-536, October.
    2. Raffaella Piccarreta, 2008. "Classification trees for ordinal variables," Computational Statistics, Springer, vol. 23(3), pages 407-427, July.
    3. Rosaria Lombardo & Eric Beh & Antonello D'Ambra, 2011. "Studying the dependence between ordinal-nominal categorical variables via orthogonal polynomials," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2119-2132.
    4. Janitza, Silke & Tutz, Gerhard & Boulesteix, Anne-Laure, 2016. "Random forest for ordinal responses: Prediction and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 57-73.
    5. Giuseppe Bove & Pier Luigi Conti & Daniela Marella, 2021. "A measure of interrater absolute agreement for ordinal categorical data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 927-945, September.
    6. Podani, János & Patonai, Katalin & Szabó, Péter & Szilágyi, András, 2022. "Coefficients of association between nominal and fully ranked ordinal variables with applications to ecological network analysis," Ecological Modelling, Elsevier, vol. 466(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    2. Walter Murray & Howard Shek, 2012. "A local relaxation method for the cardinality constrained portfolio optimization problem," Computational Optimization and Applications, Springer, vol. 53(3), pages 681-709, December.
    3. Antonello D’Ambra & Pietro Amenta & Anna Crisci & Antonio Lucadamo, 2022. "The generalized Taguchi’s statistic: a passenger satisfaction evaluation," METRON, Springer;Sapienza Università di Roma, vol. 80(1), pages 41-60, April.
    4. Edwin Fourrier-Nicolaï & Michel Lubrano, 2020. "Bayesian inference for TIP curves: an application to child poverty in Germany," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 18(1), pages 91-111, March.
    5. Yitzhaki, Shlomo, 2002. "Do we need a separate poverty measurement?," European Journal of Political Economy, Elsevier, vol. 18(1), pages 61-85, March.
    6. Claudio Zoli, 2002. "Inverse stochastic dominance, inequality measurement and Gini indices," Journal of Economics, Springer, vol. 77(1), pages 119-161, December.
    7. Adam Krzemienowski, 2009. "Risk preference modeling with conditional average: an application to portfolio optimization," Annals of Operations Research, Springer, vol. 165(1), pages 67-95, January.
    8. Miguel A. Lejeune & John Turner, 2019. "Planning Online Advertising Using Gini Indices," Operations Research, INFORMS, vol. 67(5), pages 1222-1245, September.
    9. Shalit, Haim & Yitzhaki, Shlomo, 1985. "Evaluating the Mean-Gini Approach to Portfolio Selection," Working Papers 232632, Hebrew University of Jerusalem, Center for Agricultural Economic Research.
    10. Blavatskyy, Pavlo, 2016. "Probability weighting and L-moments," European Journal of Operational Research, Elsevier, vol. 255(1), pages 103-109.
    11. Zhenlong Jiang & Ran Ji & Kuo-Chu Chang, 2020. "A Machine Learning Integrated Portfolio Rebalance Framework with Risk-Aversion Adjustment," JRFM, MDPI, vol. 13(7), pages 1-20, July.
    12. Haim Shalit & Shlomo Yitzhaki, 2010. "How does beta explain stochastic dominance efficiency?," Review of Quantitative Finance and Accounting, Springer, vol. 35(4), pages 431-444, November.
    13. Massimiliano Caporin & Grégory M. Jannin & Francesco Lisi & Bertrand B. Maillet, 2014. "A Survey On The Four Families Of Performance Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 917-942, December.
    14. Maria-Teresa Bosch-Badia & Joan Montllor-Serrats & Maria-Antonia Tarrazon-Rodon, 2017. "Analysing assets’ performance inside a portfolio: From crossed beta to the net risk premium ratio," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1270251-127, January.
    15. Kaplanski, Guy & Kroll, Yoram, 2002. "VaR Risk Measures versus Traditional Risk Measures: an Analysis and Survey," MPRA Paper 80070, University Library of Munich, Germany.
    16. Anna E. Olkova, 2017. "Mutual Funds Performance Assessment Techniques: Comparative Analysis," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 3, pages 85-95, June.
    17. Horace Ho, 2009. "An Experimental Study of Risk Aversion in Decision-making Under Uncertainty," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 15(4), pages 369-377, November.
    18. Cillo, Alessandra & Delquié, Philippe, 2014. "Mean-risk analysis with enhanced behavioral content," European Journal of Operational Research, Elsevier, vol. 239(3), pages 764-775.
    19. Yan Lau & Harvey S. Rosen, 2015. "Are Universities Becoming More Unequal?," NBER Working Papers 21432, National Bureau of Economic Research, Inc.
    20. Ran Ji & Miguel A. Lejeune & Srinivas Y. Prasad, 2017. "Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria," Annals of Operations Research, Springer, vol. 248(1), pages 305-343, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:28:y:2001:i:1:p:107-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.