IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v30y2021i3d10.1007_s10260-020-00551-5.html
   My bibliography  Save this article

A measure of interrater absolute agreement for ordinal categorical data

Author

Listed:
  • Giuseppe Bove

    (Università “Roma Tre”)

  • Pier Luigi Conti

    (Università ‘La Sapienza”)

  • Daniela Marella

    (Università “Roma Tre”)

Abstract

A measure of interrater absolute agreement for ordinal scales is proposed capitalizing on the dispersion index for ordinal variables proposed by Giuseppe Leti. The procedure allows to overcome the limits affecting traditional measures of interrater agreement in different fields of application. An unbiased estimator of the proposed measure is introduced and its sampling properties are investigated. In order to construct confidence intervals for interrater absolute agreement both asymptotic results and bootstrapping methods are used and their performance is evaluated. Simulated data are employed to demonstrate the accuracy and practical utility of the new procedure for assessing agreement. Finally, an application to a real case is provided.

Suggested Citation

  • Giuseppe Bove & Pier Luigi Conti & Daniela Marella, 2021. "A measure of interrater absolute agreement for ordinal categorical data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 927-945, September.
  • Handle: RePEc:spr:stmapp:v:30:y:2021:i:3:d:10.1007_s10260-020-00551-5
    DOI: 10.1007/s10260-020-00551-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-020-00551-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-020-00551-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raffaella Piccarreta, 2001. "A new measure of nominal-ordinal association," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(1), pages 107-120.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Perakis & P. Maravelakis & S. Psarakis & E. Xekalaki & J. Panaretos, 2005. "On Certain Indices for Ordinal Data with Unequally Weighted Classes," Quality & Quantity: International Journal of Methodology, Springer, vol. 39(5), pages 515-536, October.
    2. Raffaella Piccarreta, 2008. "Classification trees for ordinal variables," Computational Statistics, Springer, vol. 23(3), pages 407-427, July.
    3. Rosaria Lombardo & Eric Beh & Antonello D'Ambra, 2011. "Studying the dependence between ordinal-nominal categorical variables via orthogonal polynomials," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2119-2132.
    4. Podani, János & Patonai, Katalin & Szabó, Péter & Szilágyi, András, 2022. "Coefficients of association between nominal and fully ranked ordinal variables with applications to ecological network analysis," Ecological Modelling, Elsevier, vol. 466(C).
    5. Janitza, Silke & Tutz, Gerhard & Boulesteix, Anne-Laure, 2016. "Random forest for ordinal responses: Prediction and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 57-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:30:y:2021:i:3:d:10.1007_s10260-020-00551-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.