IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v25y1998i2p263-282.html
   My bibliography  Save this article

Comparison of Akaike information criterion and consistent Akaike information criterion for model selection and statistical inference from capture-recapture studies

Author

Listed:
  • D. R. Anderson
  • K. P. Burnham
  • G. C. White

Abstract

We compare properties of parameter estimators under Akaike information criterion (AIC) and 'consistent' AIC (CAIC) model selection in a nested sequence of open population capture-recapture models. These models consist of product multinomials, where the cell probabilities are parameterized in terms of survival ( ) and capture ( p ) i i probabilities for each time interval i . The sequence of models is derived from 'treatment' effects that might be (1) absent, model H ; (2) only acute, model H ; or (3) acute and 0 2 p chronic, lasting several time intervals, model H . Using a 35 factorial design, 1000 3 repetitions were simulated for each of 243 cases. The true number of parameters ranged from 7 to 42, and the sample size ranged from approximately 470 to 55 000 per case. We focus on the quality of the inference about the model parameters and model structure that results from the two selection criteria. We use achieved confidence interval coverage as an integrating metric to judge what constitutes a 'properly parsimonious' model, and contrast the performance of these two model selection criteria for a wide range of models, sample sizes, parameter values and study interval lengths. AIC selection resulted in models in which the parameters were estimated with relatively little bias. However, these models exhibited asymptotic sampling variances that were somewhat too small, and achieved confidence interval coverage that was somewhat below the nominal level. In contrast, CAIC-selected models were too simple, the parameter estimators were often substantially biased, the asymptotic sampling variances were substantially too small and the achieved coverage was often substantially below the nominal level. An example case illustrates a pattern: with 20 capture occasions, 300 previously unmarked animals are released at each occasion, and the survival and capture probabilities in the control group on each occasion were 0.9 and 0.8 respectively using model H . There was a strong acute treatment effect 3 on the first survival ( ) and first capture probability ( p ), and smaller, chronic effects 1 2 on the second and third survival probabilities ( and ) as well as on the second capture 2 3 probability ( p ); the sample size for each repetition was approximately 55 000. CAIC 3 selection led to a model with exactly these effects in only nine of the 1000 repetitions, compared with 467 times under AIC selection. Under CAIC selection, even the two acute effects were detected only 555 times, compared with 998 for AIC selection. AIC selection exhibited a balance between underfitted and overfitted models (270 versus 263), while CAIC tended strongly to select underfitted models. CAIC-selected models were overly parsimonious and poor as a basis for statistical inferences about important model parameters or structure. We recommend the use of the AIC and not the CAIC for analysis and inference from capture-recapture data sets.

Suggested Citation

  • D. R. Anderson & K. P. Burnham & G. C. White, 1998. "Comparison of Akaike information criterion and consistent Akaike information criterion for model selection and statistical inference from capture-recapture studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(2), pages 263-282.
  • Handle: RePEc:taf:japsta:v:25:y:1998:i:2:p:263-282
    DOI: 10.1080/02664769823250
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664769823250
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664769823250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akaike, Hirotugu, 1981. "Likelihood of a model and information criteria," Journal of Econometrics, Elsevier, vol. 16(1), pages 3-14, May.
    2. Chris Chatfield, 1995. "Model Uncertainty, Data Mining and Statistical Inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(3), pages 419-444, May.
    3. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    4. Stanley Sclove, 1987. "Application of model-selection criteria to some problems in multivariate analysis," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 333-343, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanku Dey & Mahendra Saha & M. Z. Anis & Sudhansu S. Maiti & Sumit Kumar, 2023. "Estimation and confidence intervals of $$C_{Np}(u,v)$$ C Np ( u , v ) for logistic-exponential distribution with application," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 431-446, March.
    2. Yessi Rahmawati & Andiga Kusuma Nur Ichsan & Annisaa Rizky Dwi Brintanti & Iqram Ramadhan Jamil, 2023. "Geo-spatial analysis: the impact of agriculture productivity, drought, and irrigation on poverty in East Java, Indonesia," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-20, December.
    3. Hugo Horta & João M. Santos, 2016. "An instrument to measure individuals’ research agenda setting: the multi-dimensional research agendas inventory," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1243-1265, September.
    4. Sanku Dey & Emrah Altun & Devendra Kumar & Indranil Ghosh, 2023. "The Reflected-Shifted-Truncated Lomax Distribution: Associated Inference with Applications," Annals of Data Science, Springer, vol. 10(3), pages 805-828, June.
    5. An Hoai Duong & Ernoiz Antriyandarti, 2023. "The Willingness to get Vaccinated Against SARS-CoV-2 Virus among Southeast Asian Countries: Does the Vaccine Brand Matter?," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 18(2), pages 765-793, April.
    6. Francis Liu & Natalie Packham & Meng-Jou Lu & Wolfgang Karl Härdle, 2023. "Hedging cryptos with Bitcoin futures," Quantitative Finance, Taylor & Francis Journals, vol. 23(5), pages 819-841, May.
    7. Courtney Shuert & Markus Horning & Jo-Ann Mellish, 2015. "The Effect of Novel Research Activities on Long-term Survival of Temporarily Captive Steller Sea Lions (Eumetopias jubatus)," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-10, November.
    8. Ariane Manuela AMIN, 2012. "What Drives Biodiversity Conservation Effort in the Developing World? An analysis for Sub-Saharan Africa," Working Papers 201230, CERDI.
    9. Verónica B Cailly Arnulphi & Sergio A Lambertucci & Carlos E Borghi, 2017. "Education can improve the negative perception of a threatened long-lived scavenging bird, the Andean condor," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-13, September.
    10. José Alves & João Quental Gonçalves, 2022. "How Money relates to value? An empirical examination on Gold, Silver and Bitcoin," Working Papers REM 2022/0222, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    11. Ariane Manuela Amin, 2012. "What Drives Biodiversity Conservation Effort in the Developing World? An analysis for Sub-Saharan Africa," CERDI Working papers halshs-00722081, HAL.
    12. Galbraith, John W. & Zinde-Walsh, Victoria, 2004. "Évaluation de critères d’information pour les modèles de séries chronologiques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 207-227, Juin-Sept.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danks, Nicholas P. & Sharma, Pratyush N. & Sarstedt, Marko, 2020. "Model selection uncertainty and multimodel inference in partial least squares structural equation modeling (PLS-SEM)," Journal of Business Research, Elsevier, vol. 113(C), pages 13-24.
    2. Peida Zhan & Xin Qiao, 2022. "DIAGNOSTIC Classification Analysis of Problem-Solving Competence using Process Data: An Item Expansion Method," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1529-1547, December.
    3. repec:jss:jstsof:06:i02 is not listed on IDEAS
    4. Nadadoor Venkat R. & Ben-Zvi Amos & Shah Sirish L., 2011. "Inferring Gene Networks using Robust Statistical Techniques," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-30, May.
    5. Md. Matiar Rahman & Mahbubul Muttakin & Animesh Pal & Abu Zar Shafiullah & Bidyut Baran Saha, 2019. "A Statistical Approach to Determine Optimal Models for IUPAC-Classified Adsorption Isotherms," Energies, MDPI, vol. 12(23), pages 1-34, November.
    6. R. Scott Hacker & Abdulnasser Hatemi-J, 2021. "Model selection in time series analysis: using information criteria as an alternative to hypothesis testing," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 49(6), pages 1055-1075, September.
    7. Marianna Virtanen & Jussi Vahtera & Jenny Head & Rosemary Dray-Spira & Annaleena Okuloff & Adam G Tabak & Marcel Goldberg & Jenni Ervasti & Markus Jokela & Archana Singh-Manoux & Jaana Pentti & Marie , 2015. "Work Disability among Employees with Diabetes: Latent Class Analysis of Risk Factors in Three Prospective Cohort Studies," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-14, November.
    8. Po-Hsien Huang, 2017. "Asymptotics of AIC, BIC, and RMSEA for Model Selection in Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 407-426, June.
    9. Qi Chen & Wen Luo & Gregory J. Palardy & Ryan Glaman & Amber McEnturff, 2017. "The Efficacy of Common Fit Indices for Enumerating Classes in Growth Mixture Models When Nested Data Structure Is Ignored," SAGE Open, , vol. 7(1), pages 21582440177, March.
    10. Wang, Wan-Lun & Castro, Luis M. & Lin, Tsung-I, 2017. "Automated learning of t factor analysis models with complete and incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 157-171.
    11. Bartolucci, Francesco & Bacci, Silvia & Pigini, Claudia, 2017. "Misspecification test for random effects in generalized linear finite-mixture models for clustered binary and ordered data," Econometrics and Statistics, Elsevier, vol. 3(C), pages 112-131.
    12. Terry Elrod & Gerald Häubl & Steven Tipps, 2012. "Parsimonious Structural Equation Models for Repeated Measures Data, with Application to the Study of Consumer Preferences," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 358-387, April.
    13. Pablo Nájera & Francisco J. Abad & Chia-Yi Chiu & Miguel A. Sorrel, 2023. "The Restricted DINA Model: A Comprehensive Cognitive Diagnostic Model for Classroom-Level Assessments," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 719-749, December.
    14. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
    15. Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251.
    16. Steven B. Caudill & James E. Long & Franklin G. Mixon, 2012. "Female athletic participation and income: evidence from a latent class model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 477-488, June.
    17. Aline Riboli Marasca & Maurício Scopel Hoffmann & Anelise Reis Gaya & Denise Ruschel Bandeira, 2021. "Subjective Well-Being and Psychopathology Symptoms: Mental Health Profiles and their Relations with Academic Achievement in Brazilian Children," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 14(3), pages 1121-1137, June.
    18. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    19. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    20. dos Santos, Fabio Luis Marques & Duboz, Amandine & Grosso, Monica & Raposo, María Alonso & Krause, Jette & Mourtzouchou, Andromachi & Balahur, Alexandra & Ciuffo, Biagio, 2022. "An acceptance divergence? Media, citizens and policy perspectives on autonomous cars in the European Union," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 224-238.
    21. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:25:y:1998:i:2:p:263-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.