IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v10y2011i1n25.html
   My bibliography  Save this article

Inferring Gene Networks using Robust Statistical Techniques

Author

Listed:
  • Nadadoor Venkat R.
  • Ben-Zvi Amos
  • Shah Sirish L.

Abstract

Inference of gene networks is an important step in understanding cellular dynamics. In this work, a novel algorithm is proposed for inferring gene networks from gene expression data using linear ordinary differential equations. Under the proposed method, a combination of known statistical tools including partial least squares (PLS), leave-one-out jackknifing, and the Akaike information criterion (AIC) are used for robust estimation of gene connectivity matrix. The proposed approach is tested and validated using a computer simulated gene network model and an experimental data on a nine gene network in Eschericia coli.

Suggested Citation

  • Nadadoor Venkat R. & Ben-Zvi Amos & Shah Sirish L., 2011. "Inferring Gene Networks using Robust Statistical Techniques," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-30, May.
  • Handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:25
    DOI: 10.2202/1544-6115.1658
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1658
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1658?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akaike, Hirotugu, 1981. "Likelihood of a model and information criteria," Journal of Econometrics, Elsevier, vol. 16(1), pages 3-14, May.
    2. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    3. H. Jeong & S. P. Mason & A.-L. Barabási & Z. N. Oltvai, 2001. "Lethality and centrality in protein networks," Nature, Nature, vol. 411(6833), pages 41-42, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. R. Anderson & K. P. Burnham & G. C. White, 1998. "Comparison of Akaike information criterion and consistent Akaike information criterion for model selection and statistical inference from capture-recapture studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(2), pages 263-282.
    2. R. Scott Hacker & Abdulnasser Hatemi-J, 2021. "Model selection in time series analysis: using information criteria as an alternative to hypothesis testing," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 49(6), pages 1055-1075, September.
    3. Danks, Nicholas P. & Sharma, Pratyush N. & Sarstedt, Marko, 2020. "Model selection uncertainty and multimodel inference in partial least squares structural equation modeling (PLS-SEM)," Journal of Business Research, Elsevier, vol. 113(C), pages 13-24.
    4. Ackermann, Nicole & Goodman, Melody S. & Gilbert, Keon & Arroyo-Johnson, Cassandra & Pagano, Marcello, 2015. "Race, law, and health: Examination of ‘Stand Your Ground’ and defendant convictions in Florida," Social Science & Medicine, Elsevier, vol. 142(C), pages 194-201.
    5. Peida Zhan & Xin Qiao, 2022. "DIAGNOSTIC Classification Analysis of Problem-Solving Competence using Process Data: An Item Expansion Method," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1529-1547, December.
    6. Congdon, P., 2005. "Bayesian predictive model comparison via parallel sampling," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 735-753, April.
    7. María Ayuda & Fernando Collantes & Vicente Pinilla, 2010. "From locational fundamentals to increasing returns: the spatial concentration of population in Spain, 1787–2000," Journal of Geographical Systems, Springer, vol. 12(1), pages 25-50, March.
    8. Ioana Gutu & Daniela Tatiana Agheorghiesei & Alexandru Tugui, 2023. "Assessment of a Workforce Sustainability Tool through Leadership and Digitalization," IJERPH, MDPI, vol. 20(2), pages 1-30, January.
    9. Asghar, Zahid & Abid, Irum, 2007. "Performance of lag length selection criteria in three different situations," MPRA Paper 40042, University Library of Munich, Germany.
    10. Daniela Andreini & Diego Rinallo & Giuseppe Pedeliento & Mara Bergamaschi, 2017. "Brands and Religion in the Secularized Marketplace and Workplace: Insights from the Case of an Italian Hospital Renamed After a Roman Catholic Pope," Journal of Business Ethics, Springer, vol. 141(3), pages 529-550, March.
    11. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Karakotsios, Achillefs & Katrakilidis, Constantinos & Kroupis, Nikolaos, 2021. "The dynamic linkages between food prices and oil prices. Does asymmetry matter?," The Journal of Economic Asymmetries, Elsevier, vol. 23(C).
    13. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    14. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    15. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
    16. Byrd, T. A. & Marshall, T. E., 1997. "Relating information technology investment to organizational performance: a causal model analysis," Omega, Elsevier, vol. 25(1), pages 43-56, February.
    17. Herbert Hoijtink & Meinte Vollema, 2003. "Contemporary Extensions of the Rasch Model," Quality & Quantity: International Journal of Methodology, Springer, vol. 37(3), pages 263-276, August.
    18. Jaewoong Yun, 2023. "Strategies for Improving the Sustainability of Fare-Free Policy for the Elderly through Preferences by Travel Modes," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    19. Malerba, Martino E. & Connolly, Sean R. & Heimann, Kirsten, 2015. "An experimentally validated nitrate–ammonium–phytoplankton model including effects of starvation length and ammonium inhibition on nitrate uptake," Ecological Modelling, Elsevier, vol. 317(C), pages 30-40.
    20. Farrell, Terence C. & Hopkins, David L., 2007. "A hedonic Model of Lamb Carcass Attributes," Australasian Agribusiness Review, University of Melbourne, Department of Agriculture and Food Systems, vol. 15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.