IDEAS home Printed from https://ideas.repec.org/a/taf/irapec/v24y2010i1p103-117.html
   My bibliography  Save this article

An analysis of East Asian currency area: Bayesian dynamic factor model approach

Author

Listed:
  • Toan Nguyen

Abstract

There has recently been an increasing interest in the establishment of a common currency area in East Asia in the aftermath of the East Asian financial crisis. In this article I examine the desirability and feasibility of forming a currency area in the region by checking the symmetry of shocks as an important criterion of the theory of Optimum Currency Area. I employ a dynamic factor model to decompose aggregate output into world, regional and country-specific components and estimate the model using a Gibbs sampling simulation. Persistent properties of those components are examined and variance decomposition analysis is performed to investigate the role of each component in output variance. The European Monetary Union, with the successful launch of the euro, is the natural benchmark for comparison. Based on variance analysis, it is found that East Asian countries, on average, are less plausible candidates for a currency area than European counterparts. However, a subgroup of countries in East Asia is as qualified as those in Europe. Given the ongoing integration in East Asia, it is not premature to prepare for such a currency area in this region.

Suggested Citation

  • Toan Nguyen, 2010. "An analysis of East Asian currency area: Bayesian dynamic factor model approach," International Review of Applied Economics, Taylor & Francis Journals, vol. 24(1), pages 103-117.
  • Handle: RePEc:taf:irapec:v:24:y:2010:i:1:p:103-117
    DOI: 10.1080/02692170903007631
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02692170903007631
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02692170903007631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Junichi Goto, 2002. "Economic Preconditions for Monetary Integration in East Asia," Discussion Paper Series 132, Research Institute for Economics & Business Administration, Kobe University.
    2. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahriar Kabir & Ruhul Salim, 2016. "Can A Common Currency Induce Intra-Regional Trade? The Southeast Asian Perspective," Review of Urban & Regional Development Studies, Wiley Blackwell, vol. 28(3), pages 218-234, November.
    2. Guimbard, Houssein & Le Goff, Maëlan, 2014. "Mega Deals: What Consequences for sub-Saharan Africa?," Conference papers 332514, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. de Truchis, Gilles & Keddad, Benjamin, 2013. "Southeast Asian monetary integration: New evidences from fractional cointegration of real exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 394-412.
    4. Shafighi, Najla & Gharleghi, Behrooz, 2016. "Feasibility of a currency union in East Asia using the five-variable structural vector autoregressive model," Economic Analysis and Policy, Elsevier, vol. 52(C), pages 45-54.
    5. Mervan Selçuk & Şakir Görmüş, 2022. "Is a Monetary Union Feasible for D-8 Countries? An Examination in The Framework of The Optimum Currency Area," Journal of Economic Policy Researches, Istanbul University, Faculty of Economics, vol. 9(1), pages 75-101, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    2. Andrés Felipe Londoño & Jorge Andrés Tamayo & Carlos Alberto Velásquez, 2012. "Dinámica de la política monetaria e inflación objetivo en Colombia: una aproximación FAVAR," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 30(68), pages 14-71, June.
    3. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    4. Darracq Pariès, Matthieu & Maurin, Laurent & Moccero, Diego, 2014. "Financial conditions index and credit supply shocks for the euro area," Working Paper Series 1644, European Central Bank.
    5. Mestekemper, Thomas & Windmann, Michael & Kauermann, Göran, 2010. "Functional hourly forecasting of water temperature," International Journal of Forecasting, Elsevier, vol. 26(4), pages 684-699, October.
    6. Jean Boivin & Marc P. Giannoni & Dalibor Stevanović, 2020. "Dynamic Effects of Credit Shocks in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 272-284, April.
    7. António Rua & Francisco Craveiro Dias & Maximiano Pinheiro, 2014. "Forecasting Portuguese GDP with factor models," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    8. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
    9. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    10. Nuno Cassola & Claudio Morana, 2008. "Modeling Short-Term Interest Rate Spreads in the Euro Money Market," International Journal of Central Banking, International Journal of Central Banking, vol. 4(4), pages 1-37, December.
    11. de Bandt,O. & Malik, S., 2010. "Is there Evidence of Shift-Contagion in International Housing Markets?," Working papers 295, Banque de France.
    12. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    13. Yifan Shen & Tilak Abeysinghe, 2021. "International Transmission Mechanism And World Business Cycle," Economic Inquiry, Western Economic Association International, vol. 59(1), pages 510-531, January.
    14. Nii Ayi Armah & Norman Swanson, 2010. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
    15. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
    16. repec:hum:wpaper:sfb649dp2010-039 is not listed on IDEAS
    17. Amendola, Adalgiso & Di Serio, Mario & Fragetta, Matteo & Melina, Giovanni, 2020. "The euro-area government spending multiplier at the effective lower bound," European Economic Review, Elsevier, vol. 127(C).
    18. Cesa-Bianchi, Ambrogio, 2013. "Housing cycles and macroeconomic fluctuations: A global perspective," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 215-238.
    19. Kaabia, Olfa & Abid, Ilyes & Guesmi, Khaled, 2013. "Does Bayesian shrinkage help to better reflect what happened during the subprime crisis?," Economic Modelling, Elsevier, vol. 31(C), pages 423-432.
    20. Francesco Audrino & Fulvio Corsi & Kameliya Filipova, 2016. "Bond Risk Premia Forecasting: A Simple Approach for Extracting Macroeconomic Information from a Panel of Indicators," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 232-256, February.
    21. Alexander Chudik & M. Hashem Pesaran & Kamiar Mohaddes, 2020. "Identifying Global and National Output and Fiscal Policy Shocks Using a GVAR," Advances in Econometrics, in: Essays in Honor of Cheng Hsiao, volume 41, pages 143-189, Emerald Group Publishing Limited.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:irapec:v:24:y:2010:i:1:p:103-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CIRA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.