IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v24y2012i4p883-904.html
   My bibliography  Save this article

Unstable volatility: the break-preserving local linear estimator

Author

Listed:
  • Isabel Casas
  • Irene Gijbels

Abstract

The objective of this paper is to introduce the break-preserving local linear (BPLL) estimator for the estimation of unstable volatility functions for independent and asymptotically independent processes. Breaks in the structure of the conditional mean and/or the volatility functions are common in Finance. Nonparametric estimators are well suited for these events due to the flexibility of their functional form and their good asymptotic properties. However, the local polynomial kernel estimators are not consistent at points where the volatility function has a break. The estimator presented in this paper generalises the classical local linear (LL). The BPLL estimator maintains the desirable properties of the LL estimator with regard to the bias and the boundary estimation while it estimates the breaks consistently. An extensive Monte Carlo study is shown as well as detailed proofs of the estimator asymptotic behaviour.

Suggested Citation

  • Isabel Casas & Irene Gijbels, 2012. "Unstable volatility: the break-preserving local linear estimator," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 883-904, December.
  • Handle: RePEc:taf:gnstxx:v:24:y:2012:i:4:p:883-904
    DOI: 10.1080/10485252.2012.720981
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2012.720981
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2012.720981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Germán Aneiros & Nengxiang Ling & Philippe Vieu, 2015. "Error variance estimation in semi-functional partially linear regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 316-330, September.
    2. Demetrescu, Matei & Salish, Nazarii, 2024. "(Structural) VAR models with ignored changes in mean and volatility," International Journal of Forecasting, Elsevier, vol. 40(2), pages 840-854.
    3. Čížek, Pavel & Koo, Chao Hui, 2021. "Jump-preserving varying-coefficient models for nonlinear time series," Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
    4. Panagiotis Avramidis, 2016. "Adaptive likelihood estimator of conditional variance function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 132-151, March.
    5. Aslanidis, Nektarios & Casas, Isabel, 2013. "Nonparametric correlation models for portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2268-2283.
    6. Koo, Chao, 2018. "Essays on functional coefficient models," Other publications TiSEM ba87b8a5-3c55-40ec-967d-9, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    2. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    3. Sigurd Emil Rømer & Rolf Poulsen, 2020. "How Does the Volatility of Volatility Depend on Volatility?," Risks, MDPI, vol. 8(2), pages 1-18, June.
    4. Ewald, Christian-Oliver & Menkens, Olaf & Hung Marten Ting, Sai, 2013. "Asian and Australian options: A common perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1001-1018.
    5. Gao, Xiangyu & Wang, Jianqiao & Wang, Yanxia & Yang, Hongfu, 2022. "The truncated Euler–Maruyama method for CIR model driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 189(C).
    6. Eric Ghysels & Jack Morgan & Hamed Mohammadbagherpoor, 2023. "Quantum Computational Algorithms for Derivative Pricing and Credit Risk in a Regime Switching Economy," Papers 2311.00825, arXiv.org.
    7. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
    8. Chiarella, Carl & Hsiao, Chih-Ying & Tô, Thuy-Duong, 2016. "Stochastic correlation and risk premia in term structure models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 59-78.
    9. T. A. McWalter & R. Rudd & J. Kienitz & E. Platen, 2018. "Recursive marginal quantization of higher-order schemes," Quantitative Finance, Taylor & Francis Journals, vol. 18(4), pages 693-706, April.
    10. Qiang Liu & Yuhan Jiao & Shuxin Guo, 2022. "GARCH pricing and hedging of VIX options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(6), pages 1039-1066, June.
    11. João Pedro Vidal Nunes & Tiago Ramalho Viegas Alcaria, 2016. "Valuation of forward start options under affine jump-diffusion models," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 727-747, May.
    12. Goudenège, Ludovic & Molent, Andrea & Zanette, Antonino, 2022. "Moving average options: Machine learning and Gauss-Hermite quadrature for a double non-Markovian problem," European Journal of Operational Research, Elsevier, vol. 303(2), pages 958-974.
    13. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    14. Alberto Pedro Manzano-Herrero & Emanuele Nastasi & Andrea Pallavicini & Carlos Vázquez, 2023. "Pricing commodity index options," Quantitative Finance, Taylor & Francis Journals, vol. 23(2), pages 297-308, February.
    15. Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2020. "Multilevel Monte Carlo with Numerical Smoothing for Robust and Efficient Computation of Probabilities and Densities," Papers 2003.05708, arXiv.org, revised Oct 2023.
    16. Carl Chiarella & Susanne Griebsch & Boda Kang, 2013. "Investigating Time-Efficient Methods to Price Compound Options in the Heston Model," Research Paper Series 328, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    18. Andrei Cozma & Matthieu Mariapragassam & Christoph Reisinger, 2015. "Convergence of an Euler scheme for a hybrid stochastic-local volatility model with stochastic rates in foreign exchange markets," Papers 1501.06084, arXiv.org, revised Oct 2016.
    19. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2023. "A hybrid stochastic volatility model in a Lévy market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 220-235.
    20. Andrei Cozma & Christoph Reisinger, 2017. "Strong convergence rates for Euler approximations to a class of stochastic path-dependent volatility models," Papers 1706.07375, arXiv.org, revised Oct 2018.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:24:y:2012:i:4:p:883-904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.