IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v23y2011i4p909-915.html
   My bibliography  Save this article

Estimation for the invariant law of an ergodic diffusion process based on high-frequency data

Author

Listed:
  • Yoichi Nishiyama

Abstract

Let a one-dimensional ergodic diffusion process X be observed at time points such that and , where , with p∈(0, 1) being a constant depending also on some conditions on X. We consider the nonparametric estimation problems for the invariant distribution and the invariant density. In both problems, we propose some estimators which are asymptotically normal and asymptotically efficient in some functional senses.

Suggested Citation

  • Yoichi Nishiyama, 2011. "Estimation for the invariant law of an ergodic diffusion process based on high-frequency data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 909-915.
  • Handle: RePEc:taf:gnstxx:v:23:y:2011:i:4:p:909-915
    DOI: 10.1080/10485252.2011.591397
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2011.591397
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2011.591397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Negri, Ilia, 2001. "On efficient estimation of invariant density for ergodic diffusion processes," Statistics & Probability Letters, Elsevier, vol. 51(1), pages 79-85, January.
    2. D. Blanke & B. Pumo, 2003. "Optimal sampling for density estimation in continuous time," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaouch, Mohamed & Laïb, Naâmane, 2019. "Optimal asymptotic MSE of kernel regression estimate for continuous time processes with missing at random response," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    2. Laïb, Naâmane & Louani, Djamal, 2019. "Asymptotic normality of kernel density function estimator from continuous time stationary and dependent processes," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 187-196.
    3. Harry Zanten & Pawel Zareba, 2008. "A note on wavelet density deconvolution for weakly dependent data," Statistical Inference for Stochastic Processes, Springer, vol. 11(2), pages 207-219, June.
    4. Blanke, Delphine & Vial, Céline, 2008. "Assessing the number of mean square derivatives of a Gaussian process," Stochastic Processes and their Applications, Elsevier, vol. 118(10), pages 1852-1869, October.
    5. Sultana Didi & Salim Bouzebda, 2022. "Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes," Mathematics, MDPI, vol. 10(22), pages 1-37, November.
    6. Nadia Bensaïd & Sophie Dabo-Niang, 2010. "Frequency polygons for continuous random fields," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 55-80, April.
    7. Salim Bouzebda & Mohamed Chaouch & Sultana Didi Biha, 2022. "Asymptotics for function derivatives estimators based on stationary and ergodic discrete time processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 737-771, August.
    8. Comte, F. & Merlevède, F., 2005. "Super optimal rates for nonparametric density estimation via projection estimators," Stochastic Processes and their Applications, Elsevier, vol. 115(5), pages 797-826, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:23:y:2011:i:4:p:909-915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.