IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v118y2008i10p1852-1869.html
   My bibliography  Save this article

Assessing the number of mean square derivatives of a Gaussian process

Author

Listed:
  • Blanke, Delphine
  • Vial, Céline

Abstract

We consider a real Gaussian process X with unknown smoothness where the mean square derivative X(r0) is supposed to be Hölder continuous in quadratic mean. First, from selected sampled observations, we study the reconstruction of X(t), t[set membership, variant][0,1], with a piecewise polynomial interpolation of degree r>=1. We show that the mean square error of the interpolation is a decreasing function of r but becomes stable as soon as r>=r0. Next, from an interpolation-based empirical criterion and n sampled observations of X, we derive an estimator of r0 and prove its strong consistency by giving an exponential inequality for . Finally, we establish the strong consistency of with an almost optimal rate.

Suggested Citation

  • Blanke, Delphine & Vial, Céline, 2008. "Assessing the number of mean square derivatives of a Gaussian process," Stochastic Processes and their Applications, Elsevier, vol. 118(10), pages 1852-1869, October.
  • Handle: RePEc:eee:spapps:v:118:y:2008:i:10:p:1852-1869
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00184-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Müller-Gronbach, Thomas & Ritter, Klaus, 1997. "Uniform reconstruction of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 69(1), pages 55-70, July.
    2. Blanke, D. & Bosq, D., 1997. "Accurate rates of density estimators for continuous-time processes," Statistics & Probability Letters, Elsevier, vol. 33(2), pages 185-191, April.
    3. D. Blanke & B. Pumo, 2003. "Optimal sampling for density estimation in continuous time," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 1-23, January.
    4. Lasinger, Rudolf, 1993. "Integration of covariance kernels and stationarity," Stochastic Processes and their Applications, Elsevier, vol. 45(2), pages 309-318, April.
    5. Susanne Ditlevsen & Michael Sørensen, 2004. "Inference for Observations of Integrated Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(3), pages 417-429, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delphine Blanke & Céline Vial, 2011. "Estimating the order of mean-square derivatives with quadratic variations," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 85-99, February.
    2. Karim Benhenni & Mustapha Rachdi & Yingcai Su, 2013. "The effect of the regularity of the error process on the performance of kernel regression estimators," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 765-781, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Sköld, 2001. "The Asymptotic Variance of the Continuous-Time Kernel Estimator with Applications to Bandwidth Selection," Statistical Inference for Stochastic Processes, Springer, vol. 4(1), pages 99-117, January.
    2. Labrador, Boris, 2008. "Strong pointwise consistency of the kT -occupation time density estimator," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1128-1137, July.
    3. Song, Yuping & Lin, Zhengyan, 2013. "Empirical likelihood inference for the second-order jump-diffusion model," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 184-195.
    4. Laïb, Naâmane & Louani, Djamal, 2019. "Asymptotic normality of kernel density function estimator from continuous time stationary and dependent processes," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 187-196.
    5. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    6. Nicolau, João, 2008. "Modeling financial time series through second-order stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2700-2704, November.
    7. Yunyan Wang & Lixin Zhang & Mingtian Tang, 2012. "Re-weighted functional estimation of second-order diffusion processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(8), pages 1129-1151, November.
    8. Salim Bouzebda & Mohamed Chaouch & Sultana Didi Biha, 2022. "Asymptotics for function derivatives estimators based on stationary and ergodic discrete time processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 737-771, August.
    9. Comte, F. & Genon-Catalot, V. & Rozenholc, Y., 2009. "Nonparametric adaptive estimation for integrated diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 811-834, March.
    10. Jean Jacod & Mark Podolskij, 2012. "A Test for the Rank of the Volatility Process: The Random Perturbation Approach," Global COE Hi-Stat Discussion Paper Series gd12-268, Institute of Economic Research, Hitotsubashi University.
    11. Jean Jacod & Mark Podolskij, 2012. "A test for the rank of the volatility process: the random perturbation approach," CREATES Research Papers 2012-57, Department of Economics and Business Economics, Aarhus University.
    12. Friedrich Hubalek & Petra Posedel, 2008. "Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models," Papers 0807.3479, arXiv.org.
    13. Sköld, Martin & Hössjer, Ola, 1999. "On the asymptotic variance of the continuous-time kernel density estimator," Statistics & Probability Letters, Elsevier, vol. 44(1), pages 97-106, August.
    14. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    15. Chaouch, Mohamed & Laïb, Naâmane, 2019. "Optimal asymptotic MSE of kernel regression estimate for continuous time processes with missing at random response," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    16. Llop, P. & Forzani, L. & Fraiman, R., 2011. "On local times, density estimation and supervised classification from functional data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 73-86, January.
    17. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    18. Harry Zanten & Pawel Zareba, 2008. "A note on wavelet density deconvolution for weakly dependent data," Statistical Inference for Stochastic Processes, Springer, vol. 11(2), pages 207-219, June.
    19. Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
    20. Sultana Didi & Salim Bouzebda, 2022. "Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes," Mathematics, MDPI, vol. 10(22), pages 1-37, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:118:y:2008:i:10:p:1852-1869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.